Neutrino Oscillations

Heidi Schellman

June 6, 2000

Lots of help from Janet Conrad

Subscription For the second se

Masses are in MeV

Fermions in the Weak Interactions

Leptons

$$\psi_L = \begin{pmatrix} \nu_i \\ \ell_i \end{pmatrix} = \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}$$
$$\psi_R = \overline{\ell} = e^+, \mu^+, \tau^+$$

Quarks

$$\psi_L = \begin{pmatrix} \mathbf{u}_i \\ \mathbf{d}'_i \end{pmatrix} = \begin{pmatrix} \mathbf{u} \\ \mathbf{d}' \end{pmatrix}, \begin{pmatrix} \mathbf{c} \\ \mathbf{s}' \end{pmatrix}, \begin{pmatrix} \mathbf{t} \\ \mathbf{b}' \end{pmatrix}$$
$$\psi_R = \overline{\mathbf{q}}_i = \overline{\mathbf{u}}, \overline{\mathbf{c}}, \overline{\mathbf{d}}$$

No weak interactions for right handed ν or Left handed anti- ν

	(0.9745 - 0.9760)	0.217 - 0.224	0.0018 - 0.0045
$\mathbf{V} =$	0.217 - 0.224	0.9737 - 0.9753	0.036 - 0.042
	(0.004 - 0.013)	0.035 - 0.042	0.9991 - 0.9994

The quark sector shows significant mixing between generations - what about leptons?

Mixing in the Lepton Sector

- If neutrinos are massless, there may be mixing but it is durned hard to see.
- If neutrinos have different masses then, in principle, their weak flavor should evolve as they travel through space.

Two flavor mixing

- Assume that the weak eigenstates ν_e and ν_μ are mixtures of the mass eigenstates ν_1 and ν_2

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta\sin\theta \\ -\sin\theta\cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

- Then the time evolution of a $\nu_{\mu}\,$ is

 The probability of seeing an electron neutrino at time t is:

 $P(t) = |\langle \nu_e | \nu(t) \rangle|^2 = \frac{1}{2} \sin^2 2\theta [1 - \cos(E_2 - E_1)t]$

- Because the two mass states have different wavelengths.
- If E >> m then:

$$E \sim p + \frac{m^2}{2p} \qquad \frac{t}{p} \simeq \frac{L}{E}$$

• So:

$$P(L) = |\langle \nu_e | \nu(t) \rangle|^2 = \sin^2 2\theta \sin^2 \left[\frac{(m_2^2 - m_1^2)L}{4E}\right]$$

$$P(L) = | < \nu_e |\nu(t) > |^2 = \sin^2 2\theta \sin^2 \left[\frac{1.27\Delta m^2 L}{4E}\right]$$

• Where L is in km, E is in GeV, m is in eV

Experiments can be described by their E/L coverage

•P($v_{\alpha} \rightarrow v_{\beta}$) ~ sin²2 θ sin²[1.27 Δ m² L/E] •m in eV, L in km, E in GeV

If E/L << Δm^2 , P($\nu_{\alpha} \rightarrow \nu_{\beta}$) $\sim \frac{1}{2} \sin^2 2\theta$ If E/L >> Δm^2 , P($\nu_{\alpha} \rightarrow \nu_{\beta}$) ~ 0 If E/L $\sim \Delta m^2$, can measure both Δm^2 and $\sin^2 2\theta$

Other sources of neutrinos:

$$e^{-} + {}^{7}\text{Be} \rightarrow {}^{7}\text{Li} + V_{e}$$

 ${}^{8}\text{B} \rightarrow 2 {}^{4}\text{He} + e^{+} + V_{e}$

Solar neutrino detectors

 $\nu_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^ \nu_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$

Homestake, Sage, Gallex extract Argon and Ge from large samples of Cl and Ga

SuperKamiokande

50kTons Water, 11,146 50-cm γ-tubes

SUPERKAMIOKANDE INSTITUTE FOR CORRECT RAY RESEARCH UNIVERSITY OF TOXYO

MISCEN SEKKE

Cerenkov Detectors

- Solar models
 - Use integro-differential equations to extrapolate from surface to core
 - Need to know composition of sun
 - Use nuclear cross sections for processes at the core. Some go as T¹⁰
 - Need to know about diffusive, convective zones
 - Make predictions for ratios of different processes
- Can now be checked by helioseismology!

Results of solar neutrino experiments

All energy ranges are consistent with lower numbers of neutrinos. This is hard to explain with a multi-process solar model but easy to explain with a loss of neutrinos between sun and earth.

Solar neutrinos appear via v_e interactions E ~ 7 MeV

all ν can interact with matter

Other oscillation lengths are consistent with solar data!

electron v have additional interactions

As neutrinos pass through the sun, their E = T + U changes.

Summary so far

- Solar neutrino experiments indicate a deficit in electron neutrinos once they get to the earth
- Solar models cannot accommodate this deficit.
- There could be oscillations on the scale of the earths orbit ($\Delta m^2 \sim 10^{-10}$)
- Or resonant oscillations in the sun with solutions

But no experiment has seen conclusive variations with E/L

Reactor Experiments

- Nuclear reactors produce very low energy anti-electron neutrinos. Current experiments have baselines of 1km or less but still set stringent limits.
- Future experiment: KAMLAND 2002
 - Large Liquid Scintillation detectors
 - Measure interaction rates as nuclear reactors in Japan go on and off
 - Effective baseline of 200 km
 - Sensitivity to v_e ->? with $\Delta M^2 > 10^{-6} eV^2$
- Can test the Solar Large Mixing Angle solution
- Can also do solar neutrinos

Atmospheric Neutrinos

Other side of earth > 10000 km way

Atmospheric results

- Consistent with oscillations with $\Delta M^2 \sim 0.0035 \text{ eV}^2$
 - $Sin^2 2\theta \sim 0.8-1$

This is can be seen with accelerators with longbaselines

- K2K Running Now!
 - Aim a ~ 1-2GeV beam from KEK to Super-K, about 200 km
 - Running
 - Sees 3 events where expected 12?
- CERN to Gran Sasso 2003-4
 - About 700 km
 - Opera
 - Emulsions to see $\nu\mu$ -> $\nu\tau$
 - Icanoe
 - Liquid Argon to see $\nu\mu$ -> νe
- Fermilab to Soudan -2003
 - About 700 km
 - MINOS
 - Iron –Fe for high rate, $\nu\mu$ –> νe

Steel-Scintillator

MINOS

K2K, Minos and Cern experiments are very likely to measure parameters quite accurately

Liquid Argon with drift readout

Situation so far

- Solar neutrinos consistent with mixing angles for electron neutrinos below 10⁻⁴ eV²
- Atmospheric neutrinos consistent with mixing angles for muon neutrinos $\sim 3.5 \ 10^{-3}$ eV² and no electron mixing at that scale.
- These can be accommodated in a 3-flavor scheme – which is what we have anyways for quarks

Subscription For the second standard Model of Elementary Particles

Masses are in MeV