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Fermions in the 
Weak Interactions

Leptons

ψL =
(
νi
�i

)
=
(
νe
e−

)
,

(
νµ
µ−

)
,

(
ντ
τ−

)

ψR = � = e+, µ+, τ+

Quarks

ψL =
(

ui

d′
i

)
=
(

u
d′

)
,

(
c
s′

)
,

(
t
b′

)

ψR = qi = u, c, d

No weak interactions for right handed ν or
Left handed anti-ν
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neutral current (Z0 exchange)

charged current (W exchange)

Two types of neutrino interactions,
One transforms neutrino to lepton
Other doesn�t





d′

s′

b′


 =



Vus Vus Vub

Vcs Vcs Vcb

Vts Vts Vtb






d

s

b




Weak �quarks� 
are not mass 
eigenstates

V =




0.9745 − 0.9760 0.217 − 0.224 0.0018 − 0.0045

0.217 − 0.224 0.9737 − 0.9753 0.036 − 0.042

0.004 − 0.013 0.035 − 0.042 0.9991 − 0.9994




Weak 
Interactions

Mass 
Eigenstates

The quark sector shows significant 
mixing between generations � what 
about leptons?



Mixing in the Lepton 
Sector

� If neutrinos are massless, there may be 
mixing but it is durned hard to see.

� If neutrinos have different masses then, in 
principle, their weak flavor should evolve as 
they travel through space.



Two flavor mixing
� Assume that the weak eigenstates νe and 

νµ are mixtures of the mass eigenstates ν1
and ν2

� Then the time evolution of a νµ is



νe
νµ


 =



cos θ sin θ
− sin θ cos θ






ν1
ν2




|ν(0) >= |νµ >= − sin θ|ν1 > +cos θ|ν2 >

|ν(t) >= − sin θe−iE1t|ν1 > +cos θe−iE2t|ν2 >

νµ
νe

ν1 ν2



� The probability of seeing an electron 
neutrino at time t is:

� Because the two mass states have different 
wavelengths.

� If E >> m then:

� So:

� Where L is in km, E is in GeV, m is in eV

P (t) = | < νe|ν(t) > |2 = 1
2
sin2 2θ[1−cos(E2−E1)t]

E ∼ p +
m2

2p
t
p � L

E

P (L) = | < νe|ν(t) > |2 = sin2 2θ sin2[
(m2

2 −m2
1)L

4E
]

P (L) = | < νe|ν(t) > |2 = sin2 2θ sin2[
1.27∆m2L

4E
]



0.0050 eV2

0.0020 eV2

Oscillation Probability

0.0035 eV2

Experiments can be described by their E/L coverage

E/L  0.02 GeV/km

�P(να -> νβ) ~ sin22θ sin2[1.27∆m2 L/E]
�m in eV, L in km, E in GeV

If E/L >>∆m2, P(να -> νβ)  ~ 0

If E/L ~ ∆m2, can measure both ∆m2 and sin22θ

If E/L << ∆m2, P(να -> νβ) ~½ sin22θ
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Solar neutrino detectors

νe + 37Cl → 37Ar + e−

νe + 71Ga→ 71Ge+ e−

Homestake, Sage,
Gallex extract 

Argon and Ge 
from large 
samples of Cl 
and Ga



SuperKamiokande
50kTons Water, 11,146 50-cm γ-tubes



Sharp Outer
Ring with
Fuzzy
Inner 
Region

From side

short track,
no multiple 
scattering

Ring

electrons:
short track,
mult. scat.,
brems.

muons:
long track,
slows down

Sharp 
Ring

neutral pions:
2 electron-like
tracks

Two 
Fuzzy 
Rings

Fuzzy 
Ring

Cerenkov Detectors



� Solar models
� Use integro-differential 

equations to extrapolate from 
surface to core

� Need to know composition of 
sun

� Use nuclear cross sections for 
processes at the core.  Some 
go as T10

� Need to know about diffusive, 
convective zones

� Make predictions for ratios of 
different processes

� Can now be checked by helio-
seismology!



Results of solar 
neutrino experiments

All energy ranges are consistent with 
lower numbers of neutrinos. This is 
hard to explain with a multi-process 
solar model but easy to explain with a 
loss of neutrinos between sun and 
earth.



ν ν

e e

ν

ν

e

e

νe, νµ, ντ only νe

Z W

Solar neutrinos appear 
via νe interactions
E ~ 7 MeV
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all ν can interact with matter

electron ν have additional interactions

As neutrinos pass through the sun, their 
E = T + U changes.

νµ

νµ

νe

νe

E
ne

rg
y

Resonant conversion
∆m2 ~ 10-5 eV2

Other oscillation lengths 
are consistent with solar 
data! 



1

∆
 m

2
  

(e
V

2
)

10
-5

10
-4

10
-3

10
-2

10
-1

1

10
1

10
2

10
-10

10
-9

10
-8

10
-7

10
-6

10
-11

10
-4

10
-3

10
-2

10
-1

1

solar
LMA

solar SMA
SuperK exclusion
day-night asymmetry

solar
LOW

solar
VAC

sin2 2θ

νe -> ???

projected
KamLAND
day-night
asymmetry
in 7Be

Projected
KamLAND
seasonal
variation
in 7Be

Three additional
solutions are possible!



Summary so far

� Solar neutrino experiments indicate a 
deficit in electron neutrinos once they get 
to the earth

� Solar models cannot accommodate this 
deficit.

� There could be oscillations on the scale of 
the earths orbit (∆m2 ~ 10-10)

� Or resonant oscillations in the sun with 
solutions

� But no experiment has seen conclusive 
variations with E/L 

δm2
21 (eV2) 5 × 10−5 6 × 10−6 1 × 10−7

sin2 2θsolar 0.78 0.006 0.88
2



Reactor Experiments

� Nuclear reactors produce very low energy 
anti-electron neutrinos.  Current 
experiments have baselines of 1km or less 
but still set stringent limits.

� Future experiment: KAMLAND 2002
� Large Liquid Scintillation detectors
� Measure interaction rates as nuclear 

reactors in Japan go on and off
� Effective baseline of 200 km
� Sensitivity to νe-> ? with ∆M2 > 10-6 eV2

� Can test the Solar Large Mixing Angle 
solution 

� Can also do solar neutrinos
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Atmospheric Neutrinos

Underground

νe, νe, νµ, νµ
detector

Atmospheric neutrino source
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~30 kilometers

Other side of earth > 10000 km way



Super Kamiokande
Sees νµ−>ντ?

Electron ν

Muon ν
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� Consistent with oscillations with
∆M2 ~ 0.0035 eV2

� Sin22θ ~ 0.8-1

Atmospheric results



This is can be seen with 
accelerators with 

longbaselines
� K2K � Running Now!

� Aim a ~ 1-2GeV beam from KEK to 
Super-K, about 200 km

� Running
� Sees 3 events where expected 12?

� CERN to Gran Sasso � 2003-4
� About 700 km
� Opera

� Emulsions to see νµ−>ντ
� Icanoe

� Liquid Argon to see νµ−>νe
� Fermilab to Soudan �2003

� About 700 km
� MINOS

� Iron �Fe for high rate, νµ−>νe
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K2K, Minos and Cern experiments are 
very likely to measure parameters 

quite accurately
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Situation so far

� Solar neutrinos consistent with mixing 
angles for electron neutrinos below 10-4 eV2

� Atmospheric neutrinos consistent with 
mixing angles for muon neutrinos ~ 3.5 10-3

eV2 and no electron mixing at that scale.

� These can be accommodated in a 3-flavor 
scheme � which is what we have anyways for 
quarks
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