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Figure 7 Kinematic domains of recent measurements of g1(x, Q?). For the Spin
Muon Collaboration, there are two different regions because different beam energies
were used in 1992 (100 GeV) and in 1993-1996 (190 GeV). The SLAC curve indi-
cates the combined domain covered by experiments E142, E143,E154, and E155. The
HERMES domain is roughly similar to SLAC’s but starts at x = 0.03,
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Figure 8 The structure function 81 of the proton, the deuteron, and the neutron, as a
function of x, from the CERN muon-scattering experiments (left) and the SLAC and
Umm<‘n_annos-mnuzn1=m experiments (right). Only statistical errors are shown. Solid
lines show a next-to-leading order QCD fit, discussed in Section 5.
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