

Nikos Varelas University of Illinois at Chicago

CTEQ Summer School Lake Geneva, Wisconsin May 30 - June 7, 2000

Outline

- Introduction
 - QCD
 - Processes under study
 - Kinematics
 - Event generators
 - What is a Jet
- Review of Jet Algorithms
- Jet Characteristics
 - Jet energy profile
 - Differences between Quark and Gluon jets
 - Color coherence
- Jet Production
 - Jets at Tevatron
 - Jets at HERA
- Final Remarks

Quantum ChromoDynamics (QCD)

QCD : Theory of Strong Interactions

Proton

Similar to QED <u>BUT</u> Different

- Pointlike particles called quarks
- Six different "flavors" (u, d, c, s, t, b)
- Quarks carry "color" analogous to electric charge
- There are three types of color (red, blue, green)
- Mediating boson is called gluon analogous to photon
- Gluons carry color and can interact to each other very important difference from QED - from Abelian to non-Abelian theory
- At large distances: quark-quark interactions are large (quark confinement)

At small distances: quark-quark interactions are small (asymptotic freedom)

> Coupling constant ~ α_s (analogous to α in QED)

Free particles do not carry color

Dynamical Evidence for Quarks in Hadrons

Scattering processes involving the proton reveal pointlike particles with quark properties (spin 1/2; charges 2/3 or -1/3) (Friedman, Kendall, Taylor et al.)

Experiments similar to Rutherford scattering showing pointlike nucleus! see pointlike constituents with essentially $1/\sin^4(\theta/2)$ behavior: (with spectator quarks not participating)

The "Running" α_s

SU(3) gauge coupling constant (α_s) varies with q², decreasing as q² increases:

$$\alpha_s(q^2) = \frac{12\pi}{(33-2n_f)\ln q^2/\Lambda^2}$$

Measurements of the strong coupling are made in many processes at different q², clearly establishing the running of α_{s} .

Increase of α_s as $q^2 \rightarrow 0$ means that color force becomes extremely strong when a quark or gluon tries to separate from the region of interaction (large distance = small q^2). A quark cannot emerge freely, but is `clothed' with color-compensating quark-antiquark pairs.

No free quarks or gluons: jets

Nikos Varelas CTEQ Summer School 2000

Historic Perspective of QCD

 $e^+e^- -> \mu^+\mu^-$

$e^+e^- \rightarrow q\bar{q}$

e+e- -> q<u>q</u>g

$$k = (E, k)$$

$$k = (E, k)$$

$$k' = (E, k')$$

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$4 - \text{momentum for outgoing e}^{T}$$

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$4 - \text{momentum transfer}$$

$$x = \frac{Q^{2}}{2P \cdot q}$$

$$parton \text{momentum fraction}$$

$$y = \frac{P \cdot q}{P \cdot k} = \frac{E - E'}{E}$$

$$fractional energy transfer$$

$$s = (P + k)^{2} \approx 2P \cdot k = \frac{Q^{2}}{xy}$$

$$electron - proton mass squared$$

$$\hat{s} = (xP + k)^{2} \approx sx$$

$$electron - parton mass squared$$

$$\sqrt{s} = 300 \text{ GeV at HERA}$$

Nikos Varelas CTEQ Summer School 2000

"Direct" Photon Process

Nikos Varelas CTE

"Resolved" Photon Process

Nikos Varelas CTEQ S

- f_{a/A}(x_a,µ): Probability function to find a parton of type a inside hadron A with momentum fraction x_a *Parton Distribution Functions*
 - x_a: Fraction of hadron's momentum carried by parton a
 - μ: 4-momentum transfer related to the "scale" of the interaction
- $\widehat{\sigma}$: Partonic level cross section

Nikos Varelas CTEQ Summer School 2000

pp Interactions cont'd

- Complications due to:
 - Parton Distribution Functions (PDFs)
 - "Colored" initial and final states
 - Remnant jets Underlying event (UE)

Kinematics in Hadronic Collisions

Rapidity (y) and Pseudo-rapidity (η)

$$y \equiv \frac{1}{2} \ln \frac{E + p_z}{E - p_z} = \frac{1}{2} \ln \frac{1 + \beta \cos \theta}{1 - \beta \cos \theta}$$

 $\beta \cos \theta = \tanh y$ where $\beta = p/E$

In the limit $\beta \to 1$ (or $m \ll p_T$) then $\eta \equiv y |_{m=0} = \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta} = -\ln \tan \frac{\theta}{2}$

Nikos Varelas CTEQ Summer School 2000

Kinematics in Hadronic Collisions cont'd

Transverse Energy/Momentum

$$E_T^2 \equiv p_x^2 + p_y^2 + m^2 = p_T^2 + m^2 = E^2 - p_z^2$$
$$p_T \equiv p \sin \theta \qquad \qquad p_z = E \tanh y$$
$$E = E_T \cosh y$$
$$p_z = E_T \sinh y$$

Invariant Mass

$$M_{12}^{2} \equiv (p_{1}^{\mu} + p_{2}^{\mu})(p_{1\mu} + p_{2\mu})$$

$$= m_{1}^{2} + m_{2}^{2} + 2(E_{1}E_{2} - p_{1} \cdot p_{2})$$

$$\xrightarrow{m_{1}, m_{2} \to 0} 2E_{T1}E_{T2}(\cosh \Delta \eta - \cos \Delta \phi)$$

What is an Event Generator ?

Nikos Varelas CTEQ Summer School 2000

- A "Fortran" program (typically 1-50k lines of code) that generates events, trying to simulate Nature!
- Events vary from one to the next (random numbers)
- Expect to reproduce average behavior and fluctuations of real data
- Event Generators include:
 - Parton Distribution functions
 - Initial state radiation
 - Hard interaction
 - Final state radiation
 - Beam jet structure
 - Hadronization and decays
 - Some programs in the market:
 - JETSET, PYTHIA, LEPTO, ARIADNE, HERWIG, COJETS...
 - Parton-level only:
 - VECBOS, NJETS, JETRAD, HERACLES, COMPOS, PAPAGENO, EUROJET...

20

Hadronization Models

Independent fragmentation

- it is being used in ISAJET and COJETS
- simplest scheme each parton fragments independently following the approach of Fied and Feynman

String fragmentation

 it is being used in JETSET, PYTHIA, LEPTO, ARIADNE

Nikos Varelas CTEQ Summer School 2000

What are Jets ?

- Colored partons from the hard scatter evolve via soft quark and gluon radiation and hadronization process to form a "spray" of roughly collinear colorless hadrons -> JETS
- The hadrons in a jet have small transverse momenta relative to their parent parton's direction and the sum of their longitudinal momenta roughly gives the parent parton momentum
- JETS are the experimental signatures of quarks and gluons
- Jets manifest themselves as localized clusters of energy

Evidence for Jets

e ⁺e ⁻ collisions proceed through an intermediate state of a photon (or Z); such collisions lead to quark antiquark. Presence of 3rd jet signals gluon radiation

Nikos Varelas CTEQ Summer School 2000

High- E_T DØ Event

$$\begin{split} E_{T,1} &= 475 \text{ GeV}, \\ \eta_1 &= -0.69, \text{ } x_1 {=} 0.66 \\ E_{T,2} &= 472 \text{ GeV}, \\ \eta_2 &= 0.69, \text{ } x_2 {=} 0.66 \end{split}$$

$$M_{JJ} = 1.18$$

TeV
 $Q^2 = 2.2 \times 10^5$

Nikos Varelas CTEQ Summer School 2000

High- E_T DØ Event

Nikos Varelas CTEQ Summer School 2000

Jet Algorithms

- The goal is to be able to apply the "same" jet clustering algorithm to data and theoretical calculations without ambiguities.
- Jets at the "Parton Level" (i.e., before hadronization)
 - Fixed order QCD or (Next-to-) leading logarithmic summations to all orders

Leading Order

Jet Algorithms cont'd

Jets at the "Particle (or hadron) Level"

•

The idea is to come up with a jet algorithm which minimizes the non-perturbative hadronization effects

• Jets at the "Detector Level"

Nikos Varelas CTEQ Summer School 2000

Jet Algorithms - Requirements

Theoretical:

- Infrared safety
 - insensitive to "soft" radiation

- Collinear safety

- Low sensitivity to hadronization
- Invariance under boosts
 - Same jets solutions independent of boost
- Boundary stability
 - $E_T \max = \sqrt{s/2}$
- Order independence
 - Same jets at parton/particle/detector levels
- Straight forward implementation

Jet Algorithms - Requirements cont'd

• Experimental:

- Detector independence Can everybody implement this?
- Minimization of resolution smearing/angle bias
- Stability w/ luminosity
- Computational efficiency
- Maximal reconstruction efficiency
- Ease of calibration
- ...

Jet Finders (Generic Recombination)

- Define a resolution parameter y_{cut}
- For every pair of particles (i,j) compute the "separation" y_{ij} as defined for the algorithm

$$y_{ij} = \frac{M_{ij}^2}{E_{vis}^2}$$

- If min(y_{ij}) < y_{cut} then combine the particles (i,j) into k
 - E scheme: $p_k = p_i + p_j$ -> massive jets

-
$$E_0$$
 scheme: $E_k = E_i + E_j$

$$\boldsymbol{p}_{k} = E_{k} \frac{\boldsymbol{p}_{i} + \boldsymbol{p}_{j}}{\left|\boldsymbol{p}_{i} + \boldsymbol{p}_{j}\right|}$$

- Iterate until all particle pairs satisfy _{yij}>y_{cut}
- No problems with jet overlap
- Less sensitive to hadronization effects

The JADE Algorithm

$$M_{ij}^{2} = 2E_{i}E_{j}(1 - \cos\theta_{ij})$$
$$\min(y_{ij}) = \min(\frac{M_{ij}^{2}}{E_{vis}^{2}}) < y_{cut}$$

(E_{vis} is the sum of all particle energies)

- Recombination: p_k=p_i+p_j
- Problems with this algorithm
 - It doesn't allow resummation when y_{cut} is small
 - Tendency to reconstruct "spurious" jets

i.e. consider the following configuration where two soft gluons are emitted close to the quark and antiquark

The gluon-gluon invariant mass can be smaller than that of any gluon-quark and therefore the event will be characterized as a 3-jet one instead of a 2-jet event

Nikos Varelas CTEQ Summer School 2000

The Durham or "K_T" Algorithm

$$M_{ij}^{2} = 2\min(E_{i}^{2}, E_{j}^{2})(1 - \cos \theta_{ij})$$

$$\min(y_{ij}) = \frac{M_{ij}^{2}}{E_{vis}^{2}} < y_{cut}$$
For small θ_{ij}

$$M_{ij}^{2} \approx 2\min(E_{i}^{2}, E_{j}^{2})\left(1 - (1 - \frac{\theta_{ij}^{2}}{2} + \cdots)\right)$$

$$\approx 2\min(E_{i}^{2}, E_{j}^{2})\left(\frac{\theta_{ij}^{2}}{2}\right) \approx \min(k_{Ti}^{2}, k_{Tj}^{2})$$

- Recombination: p_k=p_i+p_j
- It allows the resummation of leading and next-to-leading logarithmic terms to all orders for the regions of low y_{cut}

Nikos Varelas CTEQ Summer School 2000

Jet Rates vs y_{cut}

A "K_T" Algorithm for hadron colliders

Input: List of Energy preclusters $(\Delta R = 0.2)$

Nikos Varelas CTEQ Summer School 2000

- A more intuitive representation of a jet that that given by recombination jet finders
- It clusters particles whose trajectories lie in an area $A=\pi R^2$ of (η,ϕ) space

Nikos Varelas CTEQ Summer School 2000
The "Cone" Algorithm cont'd

- It requires "seeds" with a minimum energy of ~ few hundred MeV (to save computing time)
 - Preclusters are formed by combining seed towers with their neighbors
- Jet cones may overlap so need to eliminate/merge overlapping jets

Merge/split criterion: D0 -> 50% CDF -> 75%

 Not all particles are necessarily assigned to a jet

The DO/CDF "Cone" Algorithm for Run I

In Run I: D0 and
CDF used E_x^i Snowmass E_y^i Snowmass E_z^i clustering and
defined angles via $E_{x,y,z}^J$ momentum
vectors θ^J

$$i \in C$$
 : $\sqrt{(\eta^i - \eta^C)^2 + (\phi^i - \phi^C)^2} \le R.$ (1)

In the Snowmass algorithm a "stable" cone (and potential jet) satisfies the constraints

$$\eta^C = \frac{\sum_{i \in C} E_T^i \eta^i}{E_T^C}, \quad \phi^C = \frac{\sum_{i \in C} E_T^i \phi^i}{E_T^C} \tag{2}$$

(*i.e.*, the geometric center of the previous equation is identical to the E_T -weighted centroid) with

$$E_T^C = \sum_{i \in C} E_T^i \cdot (Snowmass \ scalar \ E_T) \quad (3)$$

$$D0 \ and \ CDF's \ Angles: \qquad \eta^J = -\ln\left(\tan\left(\frac{\theta^J}{2}\right)\right) ,$$

$$\phi^J = \tan^{-1}\left(\frac{E_y^J}{E_x^J}\right) .$$

$$CDF's \ E_T:$$

$$E_T^J = E^J \cdot \sin(\theta^J), \quad E^J = \sum_{i \in J} E^i .$$

$$D0's \ E_T:$$

$$E_T^J = \sum_{i \in J} E_T^i$$

$$E_T^J = \sum_{i \in J} E_T^i$$

The "Cone" Algorithm at the NLO Parton Level

- Apply Snowmass recipe
 - Each parton must be within R_c (=0.7) of centroid
- The two partons must be within R_{sep}*R_c of one another, where Rsep varies from 1 - 2 (R_{sep}=1.3 for DO)
 - Introduce ad-hoc parameter R_{sep}
 to control parton recombination in the theoretical jet algorithm

If jets from separate events are overlayed then they can be distinguished at $(1.2-1.3)R_c$ or $R_{sep} = 0.9$ for 0.7 cones:

Nikos Varelas CTEQ Summer School 2000

"Midpoint" or Improved Legacy Cone Algorithm

- A product of the Tevatron QCD Workshop for Run II
 - Define algorithms to remove ad-hoc R_{sep} parameter in NLO cone jet clustering
- Use 4-vectors to cluster in y and \$\ophi\$, find all stable cones around seeds/preclusters
- Then find stable cones around 'midpoints'
 - The Mid Point algorithm adds new 'pseudo seeds' between each pair of jets satisfying the distance (ΔR) requirement: R_{cone} < ΔR < 2×R_{cone}

Seed > ~1 GeV

ILCA added seeds placed at ET-weighted midpoints

• Do a P_{T} -ordered splitting/merging only after all stable cones are found

Nikos Varelas CTEQ Summer School 2000

Jet characteristics

Jet Shape Measurement

$$\rho(\mathbf{r}) = 1/N_{jets} \left[\Sigma_{jets} \left(E_T(\mathbf{r}) / E_T(\mathbf{R}) \right) \right]$$

The investigation of jet profiles gives insights into the transition between the parton produced in the hard process and the observed spray of hadrons

- + Forward jets are narrower than jets in the central region for similar $E_{\rm T}$
 - forward jets have higher energy for similar $E_{\scriptscriptstyle T}$
 - forward jets are quark enriched whereas central jets are mostly gluons
- NLO (JETRAD) QCD predictions reproduce the general features of the data, however...
 - Since the jet shape measurement is a LO prediction at partonic NLO calculation, the theoretical result is very sensitive to renormalization scale
- HERWIG jets (not shown) are narrower that the data

Jet Energy Profiles at e⁺e⁻

- OPAL performed an analysis technique similar to CDF for comparison purposes
- e^+e^- jets are narrower than $p\overline{p}$ jets
- Can it be the underlying event or "splash-out"?
 - Although the CDF data include underlying event, its effect to the energy profile is not large enough to account for the difference
- Can it be due to quark/gluon jet differences?
 - Most probable explanation
 - based on MC studies OPAL jets are ~ 96% quark jets, whereas CDF jets are ~75% gluon-induced

Jet Energy Profiles at ep

- Subjet multiplicity rises as jets become more forward
- Consistent with expectations (more gluons) and HERWIG/PYTHIA
 ZEUS 1995 – Preliminary

0

-1

0

1

Quark vs Gluon Jets

Deepen understanding of jet substructure

 Quark & Gluon jets radiate proportional to their color factor:

N.N.L.O w/ energy conservation: $r \sim 1.7$

Nikos Varelas CTEQ Summer School 2000

Quark vs Gluon Jets (LEP1)

- Expectation: - Gluon jets are broader than quark jets - Gluon jets have softer fragmentation function than quark jets LEP1 measurement (OPAL) - Select three jet events quark jet (b tag, E~24 GeV) quark jet (E~42 GeV) ~97% guark jet 1500 60^{0} 150^{0} gluon jet (E~24 GeV) purity ~93%
 - Repeat analysis with a "KT" (Durham) and "cone" jet algorithm in order to compare with Tevatron results

Quark vs Gluon Jets (LEP1)

Nikos Varelas CTEQ Summer School 2000

Quark vs Gluon Jets (Tevatron/DO)

- Basic Idea:
 - Compare the subjet multiplicity of jets with same E_{τ} and η at center of mass energies 630 and 1800 GeV

- Rerun k_T algorithm on all 4-vectors merged into jet:
 - Recombine energy clusters into subjets separated by y_{CUT} (a resolution parameter)

Nikos Varelas CTEQ Summer School 2000

Subjet Multiplicity

• **Property of gauge theories.** Similar effect in QED, the "Chudakov effect" observed in cosmic ray physics in 1955

 $\theta_{ee} > \theta_{e\gamma}$

- In QCD <u>color</u> coherence effects are due to the interference of soft gluon radiation emitted along color connected partons
 - It results in a suppression of large-angle soft gluon radiation in partonic cascades
- Two types of Coherence:
 - Intrajet Coherence
 - Angular Ordering of the sequential parton branches in a partonic cascade
 - Interjet Coherence
 - String or Drag effect in multijet hadronic events

Shower Development

Color Coherence (CC) effects in partonic cascades

Angular Ordering of soft gluon radiation

uniform <u>decrease</u> of successive emission angles of soft gluons as partonic cascade evolves away from the hard process

 $\theta_{gg} < \theta_{g\overline{q}} < \theta_{q\overline{q}}$

• MC Approach:

Include CC effects probabilistically by means of AO for both initial and final state evolutions

Use phenomenological models to simulate the non-perturbative hadronization stage, e.g. the LUND string model or the cluster fragmentation model.

Interjet coherence deals with the angular structure of particle flow when three or more partons are involved

$\implies e^+e^-$ interactions:

First observations of final state color coherence effects in the early '80's (JADE, TPC/2γ, TASSO, MARK II Collaborations) (**"string"** or **"drag"** effect)

Depletion of particle flow in region between q and \overline{q} jets for $q\overline{q}g$ events relative to that of $q\overline{q}\gamma$ jets.

 $e^+e^- \rightarrow q\overline{q}\gamma \text{ vs } e^+e^- \rightarrow q\overline{q}g$

Nikos Varelas CTEQ Summer School 2000

Interjet Coherence

⇒ pp̄ interactions:

• Colored constituents in initial *and* final state (more complicated that e^+e^-)

• Probes initial-initial, final-final and **initialfinal** state color interference

Results on Coherence

Intrajer Coherence

Hump-backed plateau

Interjer Coherence

Multijets

Particle flow in W+Jets events

String Effect in e⁺e⁻

• Experimental issues:

Can Color Coherence effects survive hadronization process?

What is relative importance of perturbative vs. non-perturbative contributions?

Hump-backed plateau

- Direct consequence of CC+LPHD
- Depletion of soft particle production within jets
- Approximately Gaussian shape of inclusive distribution in the variable $\xi = \ln(E_{iet}/E_{prt}) = \ln(1/x)$
- The height of the hump is increasing with energy and peaks at $E_{prt} \sim E_{iet}^{0.5}$
- Analytic calculations: MLLA+LPHD

Charged hadron inclusive fragmentation functions

Breit frame

- $P_{\rm T} \text{ of tracks} > 150 \text{ MeV/c}$
- Studies performed at the Breit Frame of Reference
- Concentrate on the "current" hemisphere of the interaction (fragmentation products of the outgoing quark)
- The DIS "current" fragmentation (CF) functions at a momentum transfer Q are analogous to the e⁺e⁻ fragmentation functions at center of mass energy equal to Q

Test of the universality of fragmentation functions
 Nikos Varelas CTEQ Summer School 2000
 60

 $log(1/x_p)$ evolution

ZEUS 1994-97 Preliminary

- MLLA curves fit data well
- clear increase of $ln(1/x_p)_{max}$ and multiplicity with Q

 $\xi^* (\xi_{\text{peak}}) \equiv \log(1/x_p)_{\text{max}}$ evolution

- Incoherent fragmentation (phase space) excluded by both DIS & e⁺e⁻
- MLLA fit (not shown) with $Y = log(Q/2\Lambda)$:

$$\log(1/x_p)_{\rm max} = 0.5Y + c\sqrt{Y} - c^2 \Longrightarrow \Lambda_{eff} \approx 245 \,{\rm MeV}$$

- MLLA predictions fit data well
- A simultaneous fit to the peak and width values of H1 data, yields a value of Λ_{eff} =0.21 ± 0.02 GeV, in agreement with LEP

Nikos Varelas CTEQ Summer School 2000

$log(1/x_p)$ evolution

L3 Preliminary

$log(1/x_p)_{max}$ evolution

MLLA prediction fits the data better than DLA

CDF PRELIMINARY

 $Q_{eff} \equiv Q_0 = \Lambda_{QCD}$

Nikos Varelas CTEQ Summer School 2000

 $log(1/x_p)_{max}$ evolution

CDF PRELIMINARY

Excellent agreement with MLLA prediction

$\begin{array}{c} \mbox{Production of identified particles} \\ \xi^* \ evolution \\ \ DELPHI \ Preliminary \end{array} \begin{array}{c} \mbox{EP} \end{array}$

MLLA+LPHD fits the data well (Λ=150 MeV)
Momentum cut-off parameter Q₀ ~ 330 MeV

Nikos Varelas CTEQ Summer School 2000

Nikos Varelas CTEQ Summer School 2000

Except for pions, there is no monotonic massdependence of the peak position ξ^*

or

the peak position decreases vs mass differently for mesons and baryons (why? LPHD?)

Nikos Varelas CTEQ Summer School 2000

- Select events with three or more jets
- Measure the angular distribution of "softer" 3rd jet around the 2nd highest E_T jet in the event

• Compare data to several event generators with different color coherence implementations

Nikos Varelas CTEQ Summer School 2000

Monte Carlo Simulations

• Generate high statistics particle/parton level MC samples including detector position and energy resolution effects

- Shower-level event generators:
 - ISAJET v7.13
 - Does not include color coherence effects
 - Independent fragmentation
 - HERWIG v5.8
 - AO approximation
 - Cluster fragmentation
 - PYTHIA v5.7
 - AO approximation (no azimuthal correlations for ISR)
 - AO may be turned off
 - String or independent fragmentation

Parton-level pQCD calculation:

- JETRAD v1.1
 - $O(\alpha_s^3)$ parton level, one loop $2 \rightarrow 2$, tree level
 - $2 \rightarrow 3$ scattering amplitudes
 - No fragmentation

HERWIG agrees with the data distributions

HERWIG and JETRAD agree best with the data
MC models w/o CC effects disagree with the data

- In each annular region, measure number of calorimeter towers (~ particles) with $E_T > 250 \text{ MeV}$
- Plot $N^{TWR}_{JET} / N^{TWR}_{W} vs. \beta$
- Annuli "folded" about φ symmetry axis

 β range: $0 \rightarrow \pi$ (to improve statistics) $\beta = 0 \rightarrow$ "near beam", $\beta = \pi \rightarrow$ "far beam" Search disks: R(*inner*)=0.7, R(*outer*)=1.5 $\beta = \tan^{-1}(\operatorname{sign}(\eta_{W,Jet}) \Delta \phi / \Delta \eta)$

W + Jet - Monte Carlo Samples

• PYTHIA v5.7 Monte Carlo

- Full detector simulation
- Mimic noise by overlaying pedestal data
- 3 samples with different color coherence:
- "Full coherence": AO + String Fragmentation
- "Partial": No AO + String Fragmentation
- "No coherence": No AO + Independent Frag.
- Analytic Predictions by Khoze and Stirling
 - MLLA + LPHD
 - $-q\bar{q}$ ->Wg and qg->Wq processes
 - hep-ph/9612351

Nikos Varelas CTEQ Summer School 2000

Jets at Tevatron

Motivation:

- Search for breakdown of the Standard Model at shortest distances
 - At Tevatron energies:

$$p_T^{\text{max}} \sim 500 \, GeV$$

 $\Rightarrow \text{distance} \sim \frac{\hbar c}{p_T} \sim \frac{200 \, \text{MeV} \cdot \text{fm}}{500 \, \text{GeV}} \sim 10^{-19} \, m$

- Search for new particles decaying into jet final states
- Test of QCD in glory detail
 - inclusive jet production
 - cross sections vs rapidity, cross sections at different CM energies, jet shapes...
 - dijet production
 - mass and triple differential cross sections, angular distribution, BFKL searches, diffraction...
 - multi-jets
 - cross sections, event topology, color coherence...
 - jets+vectror bosons (y, W, Z)
 - cross sections, angular distributions, color coherence...

100 GeV Jets are primarily (90%) particles with $P_T < 50$ GeV.

400 GeV Jets are primarily (80%) particles with $P_T < 100$ GeV. Only 3-4% of the jet E_T is carried by particles with $P_T \ge 200$ GeV.

From Detector to Hadron Level cont'd

- Offset
 - Underlying event (UE):
 - At 1800 GeV, UE \sim 700 MeV/unit $\eta \textbf{x} \phi,$ which corresponds to E~1GeV under a R=0.7 jet cone
 - At 630 GeV, UE \sim 500 MeV/unit $\eta \textbf{x} \phi,$ which corresponds to E~0.8GeV under a R=0.7 jet cone
 - Noise, pileup, additional pp interactions
- Response
 - DO: hadronic response is determined from the missing transverse energy of photon+Jet events
 - CDF: jet response is determined using measured jet fragmentation and test beam/in situ calorimeter response information
- Out of Cone Showering
 - Correction increases as a function of η
 - It is measured from MC simulations

Nikos Varelas CTEQ Summer School 2000

NIM A424 (1999) 352

Largest source of uncertainty at large E_{jet}

Jets:

From Detector to Hadron Level cont'd

- » Energy/Position Resolution
 - D0
 - Measured from dijet collider data using \textbf{E}_{T} balance:

Nikos Varelas CTEQ Summer School 2000

Inclusive Jet Cross Section

$$\frac{d\sigma}{dP_T} \approx \sum_{a,b} \int dx_a f_{a/A}(x_a,\mu) \int dx_b f_{b/B}(x_b,\mu) \frac{d\hat{\sigma}}{dP_T}$$

$$\frac{d\,\hat{\sigma}}{d\,P_T}(a\,b\,\rightarrow\,c\,d\,) \approx \sum_N \left(\frac{\alpha_s(\mu^2)}{\pi}\right)^N M_N$$

 $LO = O(\alpha_s^2)$

 $NLO = O(\alpha_s^2) + O(\alpha_s^3)$

Nikos Varelas CTEQ Summer School 2000

Some archeology...the rise (or exponential fall) of jet cross sections

Jets from thrust / coarse clustering

1982-3:AFS - Direct Evidence... √s = 63 GeV, Jet CS @ y=0 qualitative comparison w/ gluon models in pdf's " - Further Evidence... UA2 - Observation of... √s = 540 GeV, Jet CS @ h=0 qualitative comparison w/ QCD calc. (Horgan&Jacob) AFS - Jet CS at √s = 45/63 GeV, y=0

1986: UA1 1991: UA2

Nikos

Clustering in Cones

1992/6: CDF 1999: DØ Tevatron Era, Cone Jets @ $\sqrt{s} = 1.8$ TeV, NLO QCD

$$\frac{1}{\Delta E_{T} \Delta \eta} \iint d\eta dE_{T} \frac{d^{2}\sigma}{dE_{T} d\eta} \longleftrightarrow \frac{N_{jet}}{\Delta E_{T} \Delta \eta \varepsilon \int Ldt} \text{ vs. } E_{T}$$

$$\Delta E_{T} \rightarrow E_{T} \text{ bin size} \qquad \varepsilon \rightarrow \text{ selection efficiency}$$

$$\Delta \eta \rightarrow \eta \text{ bin size} \qquad L \rightarrow \text{ inst. Luminosity}$$

$$N_{jet} \rightarrow \# \text{ of jets in the bin}$$

$$Vare las CTEQ Summer School 2000$$

The old days...

Uncertainties ~ 70% on CS: $\pm 50\%$ accept./jet corr (smearing) $\pm 40\%$ calib $\pm 10\%$ aging $\pm 15\%$ Lum $\Lambda_{\rm C} > 400$ GeV "*Exp and theo. Uncerts. taken in to account*"

Uncertainties ~ 32% on CS: $\pm 25\%$ model dep. (fragmentation) $\pm 15\%$ jet alg/analysis params $\pm 11\%$ calib $\pm 5\%$ Lum $\Lambda_{\rm C} > 825$ GeV "...include sys. effects which could distort the CS shape"

Theory Predictions

• NLO QCD predictions (α_s^3) :

Ellis, Kunszt, Soper, Phys. Rev. D, 64, (1990) Aversa, et al., Phys. Rev. Lett., 65, (1990) Giele, Glover, Kosower, Phys. Rev. Lett., 73, (1994) JETRAD

• Choices (hep-ph/9801285, Eur. Phys. J. C. 5, 687 1998):

Renormalization Scale (10%) PDFs (~20% with E_T dependence) Clustering Alg. (5% with E_T dependence)

Data vs Theory

JETRAD : $\mu = 0.5E_T^{Max}$, $R_{sep}=1.3$

QCD prediction agrees excellently with data for jets out to 450 GeV (half of beam energy), over 7 orders of magnitude ! Result is sensitive to high-x gluon density

Rapidity Dependence of Inclusive Jet Cross Section

Comparisons to JETRAD with:

PDF: CTEQ3M

DØ inclusive cross sections up to $|\eta| = 3.0$

Nikos Varelas CTEQ Summer School 2000

Inclusive Jet Cross Section Ratio: σ(630)/σ(1800) vs X_τ

 $E\frac{d^{3}\sigma}{dp^{3}} = \frac{1}{p_{T}^{4}}f$ **Cross Section Scaling** At Born level ($\mathcal{O}(\alpha_s^2)$) : where $x_T = -$ Scaling violations - PDFs, $\alpha_s(Q^2)$ Ratio of the scale invariant cross sections at different CM energies Ratio allows subrtantial reduction in uncertainties (in theory and experiment)

DØ and CDF both measure a preliminary ratio of cross sections 630/1800 GeV

Not obviously consistent with each other (especially at low x_T)

- Uncertainties due to PDF's are significantly reduced in the ratio
- Good agreement with NLO QCD in shape and normalization within 1–2 σ
- Work is underway for obtaining quantitative measure of agreement, such as $\chi^{\rm 2}$

Suggested Explanations:

- Different renormalization scales at the two CM energies
 - OK, so it's allowed, but...

- Mangano proposes an O(3GeV) non-perturbative shift in jet energy
 - losses out of cone
 - underlying event
 - intrinsic K_{T}
 - could be under or overcorrecting the data (or even different between the experiments?)

Dijet Production

• The differential cross section for a jet pair of mass M_{JJ} produced at an angle θ^* at the jet-jet CM system is:

$$\frac{d^2\sigma}{dM_{JJ}^2d\cos\theta^*} = \sum_{a,b} \int dx_a dx_b f_{a/A}(x_a,\mu) f_{b/B}(x_b,\mu) \delta(x_a x_b s - M_{jj}^2) \frac{d\widehat{\sigma}^{ab}}{d\cos\theta^*}$$

• Dominant subprocesses have very similar shape for $d\widehat{\sigma}/d\cos\theta^*$ with different weights:

$$gg \rightarrow gg : qg \rightarrow qg : q\bar{q} \rightarrow q\bar{q}$$

 $1 : 4/9 : (4/9)^2$

Angular Distributions -> Sensitive to Hard Scatter Dynamics

Search for Quark Substructure

Hypothesis:Quarks are bound states of preonsPreons interact by means of a new
strong interaction - metacolor -

For $\sqrt{\hat{s}} \ll \Lambda_c$ the composite interactions can be represented by contact terms

$$L_{qq} = \pm \frac{g^2}{2\Lambda_c^2} \overline{q}_L \gamma^\mu q_L \overline{q}_L \gamma_\mu q_L$$

 $d\sigma \sim 1/(1-\cos\theta^*)^2$ angular distribution

 $d\sigma \sim (1 + \cos\theta^*)^2$ angular distribution

Angular Distributions -> Quark Substructure

- QCD is dominated by ~ $1/(1-\cos\theta^*)^2$
- Contact interactions by ~ $(1 + \cos\theta^*)^2$

From $\cos\theta^*$ variable to χ

- Flatten out the $\cos\theta^*$ distribution by plotting dN/dx
- Facilitate an easier comparison to the theory

 $dN/d\chi$ sensitive to contact interactions

Nikos Varelas CTEQ Summer School 2000

Measurement of $rac{d\sigma}{dE_T^{jet}}$ in inclusive jet production

- Jets searched using an iterative cone algorithm
- Kinematic region: 0.2 < y < 0.85 and $Q^2 \leq 4 \text{ GeV}^2$
- $\frac{d\sigma}{dE_T^{jet}}$ for E_T^{jet} between 17 and 74 GeV

integrated over $-0.75 < \eta^{jet} < 2.5$

• The NLO calculations give a reasonable description of the measured differential cross section in magnitude and shape

• The leading-logarithm parton shower Monte Carlo gives a good description of the data in shape

Nikos Varek

 $rac{d\sigma}{dp_{\tau}^{jet}}$

Dijet Angular Distributions

 \rightarrow sensitive to the spin of the exchanged particle in two-body processes:

Collab., Phys. Lett. B384 (1996) 401

0.1

0.2

0.3

0.4

|cos⊝[']|

0.5

0.6

0.7

0.8

5

0

0

Nikos Varelas CTEG

- Testing QCD typically means testing our ability to calculate within QCD
- Our perturbative tools are working well, especially at moderate to high scales
- Lately there has been a lot of progress on jet algorithm development
- We need more theoretical and experimental effort to understand the underlying event
 - don't subtract it out from jet energies?
- Shall we be correcting the jets for hadronization effects?
 - how to deal with model dependence?
- Finally, there are many other topics on jets which I didn't cover:
 - α_s measurements
 - heavy quarks
 - BFKL, Diffractive studies
 - jets with vector bosons
 - jet final states at LEP