Neutrino Experiments

(Sorry, only a small fraction of experiments)

Jun Cao

Institute of High Energy Physics CTEQ 2014, PKU, July 12, 2014

Hypothesis

In 1930, Pauli postulated a particle to solve the crisis of conservation of energy in β decay. It should has tiny mass, neutral, barely interact with matter.

Wolfgang Pauli

"I have done a terrible thing. I have postulated a particle that cannot be detected." -- Puali

 $(N,Z) \rightarrow (N-1,Z+1) + e^- + \nabla$.

Discovery of Neutrino

 26 years later, Cowan and Reines discovered neutrinos using reactor. (Nobel Prize in 1995)

Each fission releases 6 electron antineutrinos. Six reactors in Daya Bay (17.4GW) release 3.5×10²¹ neutrinos per second.

Discovery of the 2nd and 3rd neutrinos

- Evidence for a second type of neutrino came in 1962, Leon Lederman, Jack Steinberger, and Melvin Schwartz (Nobel Prize in 1988)
- In 1989, experiments at CERN proved that there exists exactly 3 neutrino
- In 2000, DONUT at Fermilab found the τ neutrino.

Does Neutrino has mass?

- In 1956, T.D. Lee and C.N. Yang proposed Parity violation in weak interaction.
- In 1957, C.S. Wu proved it experimentally. Maximum violation.
- Lee and Yang: V-A theory of weak interaction, inherited by Standard Model
- ♦ Maximum violation → Only left-handed neutrino exist → neutrino is massless in Standard Model

Left-handed Neutrino

 In 1958, Goldhaber-Grodzins-Sunyar experiment proved the neutrino is left-handed.

Solar Neutrino Puzzle

- Every second there are 60 billion solar neutrinos fall on 1 cm² area on the Earth.
- In 1968, Homestake found that observed solar neutrino rate is only 1/3 of expected.

Davis, Nobel Prize in 2002

Neutrino Oscillation

- In 1957, Pontecovo proposed neutrino oscillation, if neutrino has tiny mass, and there are different kind of neutrinos.
- Is solar neutrino puzzle due to oscillation when flying from the Sun to the Earth?
- Vacuum oscillation assumption need fine-tuning.
 Different experiments are not consistent.
- In 1978, Wolfenstein noticed that oscillation effect will be impacted by the electron neutrino scattering in matter.
- In 1986, Mikheyev and Smirnov used this idea to explain the solar neutrino problem. (MSW effect/matter effect)

Atmospheric Neutrino Anomaly

Kamiokande and IMB experiments found atmospheric neutrinos are less than expected.

Koshiba, Nobel Prize in 2002

Discovery of Neutrino Oscillation

In 1998, Super-Kamiokande discovered atmospheric neutrino oscillation!

Neutrino Oscillation

Weak Eigen state

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$
 Mass Eigen state

$$|\boldsymbol{v}_{e}\rangle = \bigvee_{\mathbf{v}_{a}} \bigvee_{\mathbf{v}_{a}} \bigvee_{\mathbf{v}_{a}} = c_{1}|\boldsymbol{v}_{e}\rangle + c_{2}|\boldsymbol{v}_{\mu}\rangle + c_{3}|\boldsymbol{v}_{\tau}\rangle$$

Six parameters of Oscillation

Confirmation from Solar v: SNO

Confirmation from Solar v

 In 2001, SNO experiment confirmed solar neutrino oscillation unambiguously, by detecting 3 reactions simultaneously. Electron neutrinos (solar) do disappear, but total number is the same.

Confirmation from Reactor v

 In 2002, KamLAND confirmed the oscillation using reactor neutrinos. (Solar oscillation mode)

Confirmation from Accelerator v

 In 2003, K2K experiment confirmed the oscillation with accelerator (atmospheric model). The 1st accelerator neutrino experiment.

Event rate: 2.9σ Spectrum: 2.5σ Total: 3.9σ

<u>Mixing angle θ_{13} </u>

- Solar mode (solar and reactor experiments) measured Δm_{21}^2 , $\sin^2 2\theta_{21}$
- Atmospheric model (atmospheric and accelerator experiments) measured |Δm²₃₂|, sin²2θ₃₂
- Three generations of neutrino need 6 oscillation parameters. θ₁₃, δ_{CP}, and mass hierarchy unknown.
- Reactor experiments CHOOZ and Palo Verde didn't observe oscillation: sin²2θ₁₃<0.17
- In 2011, T2K found the indication (2.5 σ) of $\nu_{\mu} \rightarrow \nu_{e}$, θ_{13} could be large.

Daya Bay in 2012: θ₁₃ is large

Neutrino Puzzles

- Neutrino Oscillation
 - ➡ Mass hierarchy: Which neutrino is the lightest?
 - ⇒ CP violation: Mystery of the missing antimatter
 - \Rightarrow Octant of θ_{23}
- The absolute neutrino mass?
 - \Rightarrow β decay; 0vββ; cosmology
- Is neutrino its own anti-particle?
 - \Rightarrow Dirac or Majorana (0νββ)
- Is there sterile neutrino(s)?
- •••
- Neutrinos as probes
 - → Nucleon structure and QCD;
 - \Rightarrow Solar v; supernovae v; ultra-high energy v; big bang v
 - ⇒ geo-v;

Next Goals in Oscillation

- Mass Hierarchy.
 - ⇒ Long baseline accelerator experiment (>1000 km)
 - ⇒ Atmospheric experiment (better if charge identified).
 - \Rightarrow **Reactor** experiment, via P₃₁ and P₃₂ interference.
 - ⇒ All are challenging. Need > 10 k ton detector.
- CP phase.
 - ⇒ By accelerator experiment. Measuring the asymmetry between neutrino and antineutrino oscillation.
 - → Atmospheric has certain sensitivity
- θ_{23} Octant, also by accelerator and atmospheric
- Sterile neutrino.
 - ⇒ Short baseline accelerator experiments
 - ⇒ Short baseline reactor experiments
 - ⇒ Source experiments

Accelerator Neutrinos

Conventional beam

$\pi^- \rightarrow \mu^- + \bar{\nu_\mu}$	$K o \mu + \nu_{\mu}$
$\pi^+ \to \mu^+ + \nu_\mu$	$\mu \rightarrow e + \bar{\nu}_{\mu} + \nu_{e}$

• Muon beam under R&D (v factory, MOMENT) $\mu^+ \rightarrow e^+ + \bar{\nu}_{\mu} + \nu_e$

Accelerator Neutrinos

	Past	Running	Planned
Japan	K2K	T2K	Hyper-K
Fermilab		MINOS(+) NOvA	LBNE(F)
CERN	ICRUS OPERA		LBNO?

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}\left[\cos\Delta_{32}\cos\delta\right] \sin\Delta_{32}\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}\left[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\right]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\left(1 - 2s_{13}^{2}\right)\left[\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \right]. \end{split}$$

Short-baseline such as MiniBooNE

<u>Neutrino beam: Off-Axis</u>

Detection

 $\sigma_{\rm cc}/{\rm E}_{\nu}$ (10⁻³⁸ cm²/GeV)

Particle Identification

Appearance

Disappearance:

\mathbf{v}_{μ} disappearance: determine θ_{23} and $\Delta m^2{}_{32}$

2011: Indication from T2K

- We reported new results on $\nu_{\mu} \rightarrow \nu_{e}$ oscillation analysis based on 1.43 x 10²⁰ p.o.t. (2% exposure of T2K's goal)
 - The expected number of events is 1.5 ± 0.3 (sin²2 $\theta_{13} = 0$)
 - 6 candidate events are observed
 - Under $\theta_{13}=0$ hypothesis, the probability to observe 6 or more candidate events is 0.007 (equivalent to 2.5 σ significance)
 - 0.03 (0.04) $< \sin^2 2\theta_{13} < 0.28$ (0.34) at 90% C.L. for normal (inverted) hierarchy (assuming $\Delta m^2_{23}=2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23}=1$, $\delta_{CP}=0$)

Indication of V_e appearance

submitted to PRL

- Resume experiment as soon as possible and improve analysis method to conclude v_e appearance phenomenon
- v_{μ} disappearance result with 1.43 x 10²⁰ p.o.t. data will be reported this summer

Phys. Rev. Lett. 112, 061802 (2014) T2K observation of v_e Appearance

Let's think about these regions!

- Comparing with the external reactor constraint the best overlap is for the normal hierarchy with $\delta_{cp} = -\pi/2$.
- This is a lucky point!
- You also need to increase the θ₂₃ mixing angle to account for the number of observed events.

Hyper-K

- ◆ 1Mt water Cherenkov
 ◆ J-PARC beam, 0.2 2 MW
 ⇒ And atmospheric neutrinos
 ◆ Detector Construction: 2015
- Operation: 2022

• measurements of the $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\mu}$ for both ν and $\overline{\nu}$

Ash River Laboratory

- 14 kt *totally active*, liquid scintillator , surface detector
- Optimized as a highly segmented low Z calorimeter/range stack

Tuned to:

- Reconstruct EM showers
- \Rightarrow Measure μ track momenta
- Identify interaction vertices and nuclear recoils

NOvA- Mass Hierarchy

 $(\overline{\nu}_{\mu} \rightarrow \overline{\nu}$)

LBNE(F)

- 10 kt (34 kt) LAr on surface (underground)
- FermiLab NUMI beam, 0.7 MW
- Detector Construction: 2014
- CD1 approved
- Operation: 2022?

Atmospheric neutrinos

 $v_{\mu}/v_e \approx 2$ at low energies

 v_{μ}/v_{e} > 2 at high energies since fewer μ decays

- Dominant effect is v_{μ} disappearance (discovered in 1998)
- Further studies on sub-dominant effects
 - V_T appearance (established in 2013)
- Full three flavor analysis
 - v_e and v_μ flux change to extract information on mass hierarchy, $\delta_{CP},\,\theta_{23}$ and $\Delta m^2{}_{32}$
- Test of non-standard models

Evidence for T neutrino appearance

 $\nu_{\mu} \rightarrow \nu_{\tau}$ channel has been confirmed by τ identification

Mass Hierarchy from Atmospheric

- Due to matter effect, oscillation probability of atmospheric muon neutrino when passing the Earth depends on mass hierarchy
- If can't do PID, most of the effec will cancel, but the residual effec still can distinguish the MH

Atmospheric neutrino
50kt Iron-calorimeter
Construction: 2012-2017
Operation: 2018
3 s in ~2030

three 17kt modules, each 16×16×14.4m³ 150 iron plates, each 5.6 cm thick

PINGU

Phased Icecube Next Generation Upgrade

The JUNO Experiment

 Jiangmen Underground Neutrino Observatory, a multiple-purpose neutrino experiment, approved in Feb. 2013. ~ 300 M\$.

- 20 kton LS detector
- **3% energy resolution**
- **Rich physics possibilities**
 - Reactor neutrino for Mass hierarchy and precision measurement of oscillation parameters
 - ⇒ Supernovae neutrino
 - ➡ Geoneutrino
 - ⇒ Solar neutrino
 - ⇒ Sterile neutrino
 - ⇒ Atmospheric neutrino
 - ⇒ Exotic searches

Talk by Y.F. Wang at ICFA seminar 2008, Neutel 2011; by J. Cao at Nutel 2009, NuTurn 2012; Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103, 2008; PRD79:073007,2009

Interference: Relative Measurement

$$\begin{aligned} P_{ee}(L/E) &= 1 - P_{21} - P_{31} - P_{32} \\ P_{21} &= \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21}) \\ P_{31} &= \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31}) \\ P_{32} &= \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32}) \end{aligned} \qquad \begin{aligned} P_{21} &= 0.81 \sin^2 \Delta_{21} \\ P_{31} &= 0.7 \times \sin^2 2\theta_{13} \times \sin^2 \Delta_{31} \\ P_{32} &= 0.3 \times \sin^2 2\theta_{13} \times \sin^2 \Delta_{32} \end{aligned}$$

- The relative larger (0.7) oscillation and smaller (0.3) oscillation, which one is slightly (1/30) faster?
- Take Δm_{32}^2 as reference, after a Fourier transformation \Rightarrow NH: $\Delta m_{31}^2 > \Delta m_{32}^2$, Δm_{31}^2 peak at the right of Δm_{32}^2 \Rightarrow IH: $\Delta m_{31}^2 < \Delta m_{32}^2$, Δm_{31}^2 peak at the left of Δm_{32}^2

Location of JUNO

NPP	Daya Bay	Huizhou	Lufeng	Yangjian	g	Taishan		
Status	Operational	Planned	Planned	Under construction		Under construction		
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	I	18.4	GW	
Overbur	den ~ 700 m				t.	oy 2020	: 26.6	GW
		Papethat		Previous site ca	ndidate			Q
Kaiping, Jian <mark>g M</mark> en	City,	Guang Zho	U Dongguan			3 a d	Z	
Guangdon	g Province	2.5 h drive	Shen Zhen	H	uizhou DD	Lufe NPP	ng	
	.1	o Zhongshan Zhu Ha	í 🚯 ✿Hong	Daya Bay				
	5 3.		Hong Ko	ong			6 . 50	
	53 km	Mac	au	Cores	YJ-C1 YJ-C2	YJ-C3 YJ-	C4 YJ-C5	YJ-C6
53 km	n /	No.	\$	Power (GW) Baseline (km)	2.9 2.9 52.75 52.84	2.9 2.9 52.42 52.) 2.9 51 52.12	2.9 52.21
1	Taish	an NPP		Cores	TS-C1 TS-C2	TS-C3 TS-	C4 DYB	HZ
Yangjian	g NPP			Power (GW) Baseline (km)	4.6 4.6 52.76 52.63	4.6 4. 52.32 52.	5 17.4 20 215	17.4 265

High-precision, giant LS detector

	KamLAND	BOREXINO	JUNO
LS mass	1 kt	0.5 kt	20 kt
Energy Resolution	6%/√ <i>E</i>	5%/√ <i>E</i>	3%/√ <i>E</i>
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

Sensitivity on MH and mixing parameters

	Current	JUNO
Δm^2_{12}	~3%	~0.5%
Δm^2_{23}	~4%	~0.6%
$\sin^2\theta_{12}$	~7%	~0.7%
$\sin^2\theta_{23}$	~15%	N/A
$\sin^2\theta_{13}$	~6% -> ~4%	~ 15%

JUNO MH sensitivity with 6 years' data:

Ref: Y.F Li et al, PRD 88, 013008 (2013)	Relative Meas.	$^{(a)}$ Use absolute Δm^2
Ideal case	4σ	5σ
^(b) Realistic case	3σ	4σ

 (a) If accelerator experiments, e.g NOvA, T2K, can measure Δm²_{µµ} to ~1% level
 (b) Take into account multiple reactor cores, uncertainties from energy nonlinearity, etc

Probing the unitarity of U_{PMNS} to ~1% more precise than CKM matrix elements !

Supernova Neutrinos

Less than 20 events observed so far

Assumptions:

- ⇒ Distance: 10 kpc (our Galaxy center)
- \Rightarrow Energy: 3×10^{53} erg

Quenched Proton Energy E_n^{vis} [MeV]

 \Rightarrow L_v the same for all types

LS detector vs. Water Cerenkov detectors: much better detection to these correlated events

→ Measure energy spectra & fluxes of almost all types of neutrinos

Other Physics

Geo-neutrinos

 \Rightarrow Current results

KamLAND: 30±7 TNU (*PRD* 88 (2013) 033001) Borexino: 38.8±12.2 TNU (*PLB* 722 (2013) 295) Statistics dominant

⇒ Desire to reach an error of 3 TNU

 \Rightarrow JUNO: ×10 statistics

- Huge reactor neutrino backgrounds
- Expectation: $\sim 36 \pm 10\% \pm 10\%$

Solar neutrino

- ⇒ Metallicity? Vacuum oscillation to MSW?
- ⇒ need LS purification, low threshold
- ⇒ background handling (radioactivity, cosmogenic)

Atmospheric neutrino

 \Rightarrow measure v energy instead of leptons' in LS. ~ 2σ for MH in 10 years

Diffuse supernovae v, Sterile v, Indirect dark matter, Nucleon decay, etc.

Experiments/Proposals for MH

M. Blennow et al., JHEP 1403 (2014) 028

JUNO: Competitive in schedule and Complementary in physics

- ⇒ Have chance to be the first to determine MH
- ⇒ Independent of the CP phase and θ_{23} (Acc. and Atm. do)
- ➡ Combining with other experiments can significantly improve the sensitivity
- ⇒ Well established liquid scintillator detector technology

Neutrino Mass

Three ways to determine the absolute mass

1) $0\nu\beta\beta$ decay

$$\langle m \rangle_{ee} = \sum_{i} (m_i V_{ei}^2)$$

2) β decay

$$\langle m \rangle_e = \sqrt{\sum_i (m_i^2 |V_{ei}|^2)}$$

3) Cosmology

And Supernovae?

non-oscillation	probed	experimental	$99\%~{\rm CL}$ range	$99\%~{\rm CL}$ range
parameter	by	limit at 99% CL	normal hierarchy	inverted hierarchy
ee-entry of m	$0\nu 2\beta$	$m_{ee} < 0.39 \ h \ \mathrm{eV}$	$(1.1 \div 4.5) \mathrm{meV}$	$(12 \div 57) \mathrm{meV}$
$(m^{\dagger}m)^{1/2}_{ee}$	β -decay	$m_{\nu_e} < 2.1 \text{ eV}$	$(4.6 \div 10) \mathrm{meV}$	$(42 \div 57) \mathrm{meV}$
$m_1 + m_2 + m_3$	$\cos mology$	$m_{\rm cosmo} \lesssim 0.5 \ {\rm eV}$	$(51 \div 66) \mathrm{meV}$	$(83 \div 114) \mathrm{meV}$

Direct Measurement: Kurie plot

Nuclear β decay:

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}E} = C \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_i^2} F(E,Z) \cdot \theta(E_0 - E - m_i)$$
(v-mass)²

Neutrino mass determination: E0 & shape

Katrin experiment

Magnetic Adiabatic Collimation + Electrostatic Filter

A large spectrometer: Sensitivity increase with area Low statistics for relevant events Resolution: ~ 1 eV

Sensitivity @ 90%CL: m(v) < 0.2 eV Last such exp. ?

<u>ββ-decays: two modes</u>

- $2\nu \mod \beta\beta$ decays would have a half lives in excess of 10^{20} years
- A second order process, Only if the first order beta decay is forbidden
- Experimental observation of $2\nu\beta\beta$ -decays in 1980'

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) \left| M_{0\nu} \right|^2 m_{\beta\beta}^2$

$$m_{etaeta} = \Big|\sum_i U_{ei}^2 \, m_i \Big|_{i}$$

Without Background

$$m_{etaeta} = K_1 \sqrt{rac{N}{arepsilon M t}}$$

With Background

Some Experiments

Gerda in Gran Sasso

- Exposure 21.6 kg × yr
- Half-life limit
- $T_{1/2}(0v) > 2.1 \times 10^{25} \text{ yr} (90\% \text{ CL})$

NEMO-3 in Frejus

- ¹⁰⁰Mo Exposure 34.3 kg × yr
- Half-life limit
- $T_{1/2}(0v) > 1.1 \times 10^{24} \text{ yr} (90\% \text{ CL})$
- $< m_{\beta\beta} > < 0.33 0.87 \text{ eV}$

Some Experiments

KamLAND-Zen

KamLAND-zen

- 320 kg Xe
- Half-life limit $T_{1/2}(0v) > 2.6 \times 10^{25} \text{ yr} (90\% \text{ CL})$
- $< m_{\beta\beta} > < 0.33 0.87 \text{ eV}$

EXO-200: 200 kg

 $T_{1/2}^{0\nu\beta\beta} > 1.1 \cdot 10^{25} yr$ (90% CL)

 $\langle m \rangle_{\beta\beta} \leq 190 - 450 \text{ meV}$

nEXO: 5 ton, Ba⁺⁺ tag

Mass Hierarchy and 0νββ

Neutrino mass and Neff from cosmology

57

Summary: Neutrino Puzzles

- Neutrino oscillation well established by many exp.
 - ⇒ We have measured 4.5 parameters out of 6
 - ⇒ Mass hierarchy should be able to know in 10-15 years.
 - ⇒ CP violation may be determined in 15-20 years?
- Neutrino mass can be directly measured to >0.2 eV, New tech could improve the limit to 0.1 eV but hard to improve further.
- If we see 0vββ decay, very likely neutrino is Majorana particle. New physics must exist. Current planned experiments could exclude 0vββ if mass hierarchy is normal, but can't if MH is inverted.
- Is there sterile neutrino? (accelerator, reactor, source ...)