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Lecture II: Improving parton showers with
fixed-order calculations
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Recap of last lecture

• QCD scattering cross sections factorise.

• The factorisation can be cast into a probabilistic form suitable for a
numerical implementation.

• Parton showers tell us how the inclusive cross section is sliced up
into exclusive objects, where exclusive means a fixed number of
resolved jets.

• Exclusive cross sections are defined through no-emission
probabilities.

• All cross sections can be writen as a polynomial of logarithms.

• This log-structure can be illustrated on figures.
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Recap: αs orders are split into legs and loops
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Recap: αs orders are split into legs and loops
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Recap: n-leg MEs fill towers
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Recap: n-leg MEs fill towers
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Recap: n-loop corrections fill towers
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Recap: n-loop corrections fill towers
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Recap: Towers are composed of logs
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Recap: PS fixed order input
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Recap: PS resums LL rows into no-emission probabilities (no PS emission)
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Recap: PS fills layers of LL loop corrections (one PS emission)
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Recap: PS fills layers of LL loop corrections (no or one PS emission)
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Recap: PS fills layers of LL loop corrections (sum of all PS results)
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Recap of last lecture

• QCD scattering cross sections factorise.

• The factorisation can be cast into a probabilistic form suitable for a
numerical implementation.

• Parton showers tell us how the inclusive cross section is sliced up
into exclusive objects, where exclusive means a fixed number of
resolved jets.

• Exclusive cross sections are defined through no-emission
probabilities.

• All cross sections can be writen as a polynomial of logarithms.

• This log-structure can be illustrated on figures.

Systematic improvements of modern showers are possible due to local
energy-momentum conservation.
=⇒ Systematic improvements are the topic of this lecture!
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Improvement schemes

• Matrix element corrections.

• Oldest scheme
• Usage in Herwig(++) and Pythia(8) slightly different.
• Very hard to iterate.

• Matrix element matching.

• Used ideas from ME corrections.
• Typically combined with NLO corrections.
• Very hard to iterate.

• Matrix element merging.

• Slice phase space in two, use ME for hard jets, PS for soft jets.
• Introduces resolution criterion.
• Very easy to iterate.

We will use Bn for the tree-level n-parton differential cross section, and B̃n or
Bn for NLO cross sections that are differential in n-parton phase space.
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Matrix element corrections

Remember how we constructed the parton shower:

• Find a factorizing approximation.

• Cast the factorising functions into probabilities.

• Choose branchings probabilistically.

Idea: Find new probabilities that add to the full ME!

For this, we need an overestimate for the double-differential partonic cross
section Pfull-ME, and find a corrective probability PME-correction, so that

Pfull-ME ≡
∑

Pnew =
∑

Pshower ∗ PME-correction,i with

Pshower =
∑

i ∈ [possible PS splittings]

PPS,i , PME-correction,i =
PiPfull-ME

Pshower
and

∑

i

Pi = 1

Then we can use two steps to correct an emission to the full ME result:

1. Choose a branching according to PPS,i

2. Accept with probability PME-correction,i

Summed over all possibilities, this gives the full ME (“Veto algorithm”).
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ME corrections: Start from lowest order cross section.
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ME corrections: Produce no emissions according to new probability
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ME corrections: Generate emissions according to new probability
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This reproduces the full 1-parton radiation pattern, and is finite!
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Matrix element corrections

Pro

• Rather natural within parton shower.

• Full ME (incl. interferences) gets exponentiated, not only approximation!

• Very efficient.

Contra

• Difficult to find overestimates, projectors and corrective weights.

• Exponentiation extends over full phase space (need to integrate the
1-parton ME over full phase space).

• Difficult to iterate, since ME-correction for n+ 1-partons has to divide out
n-parton ME.

Subtleties

• The hardest emission has to be corrected, not only the first emission.

• Need to use “soft” and “hard” corrections if PS does not cover phase
space: Add full ME in the gaps (hard), ME corrections for every “hardest
emission” in the evolution (soft).

⇒ Unfortunately usual attitude: Process dependent, tricky to achieve
generality.

Note: Vincia iterates MEC’s for e+e− → jets, and also aims for pp collisions.
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NLO matching

NLO matching does not solve MEC problems, but uses the lessons to

Achieve NLO for inclusive +0-jet, and LO for inclusive +1-jet observables

To get there, remember that the NLO cross section is

BNLO = [Bn + Vn + In]O0 +

∫
dΦrad (Bn+1O1 − Dn+1O0)

= [Bn + Vn + In]O0 +

∫
dΦrad (Sn+1O0 − Dn+1O0)

+

∫
dΦrad (Sn+1O1 − Sn+1O0) +

∫
dΦrad (Bn+1O1 − Sn+1O1)

where Sn+1 are approximate virtual/real PS corrections.

Red term is the O(αs) part of a shower from Bn. ⇒ For now discard from BNLO.

Thus, we have the seed cross section

B̂NLO =

[
Bn + Vn + In +

∫
dΦrad (Sn+1 − Dn+1)

]
O0 +

∫
dΦrad (Bn+1 − Sn+1)O1

This is not the NLO result. . . but showering the O0-part will restore this!
=⇒ NLO +PS accuracy!
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POWHEG

We have found that NLO +PS is possible if we start from the seed cross section

B̂NLO =

[
Bn + Vn + In +

∫
dΦrad (Sn+1 − Dn+1)

]
O0 +

∫
dΦrad (Bn+1 − Sn+1)O1

where Sn+1 is the PS approximation of the n + 1-jet rate.

=⇒ The NLO matching only depends on the first PS step!

The first step can be done externally. Using Sn+1 = Bn+1, i.e. a MEC for the
first splitting, we find

B̂NLO =

[
Bn + Vn + In +

∫
dΦrad (Bn+1 − Dn+1)

]
O0 = Bn

=⇒ Seed cross section is simply the inclusive NLO result. This is POWHEG.

Roughly, POWHEG combines an ME correction with an NLO weight.

POWHEG-BOX is an ME generator that provides NLO inputs for parton
showers. One (ME corrected) emission is done by POWHEG-BOX, other
emissions have to be filled in by PS.
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POWHEG illustration
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The hardness of the emission is defined differently from parton shower. 27 / 114
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POWHEG illustration
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POWHEG illustration
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POWHEG

Pro

• Inherits pros from ME correction.

• Full ME (incl. interferences) gets exponentiated, not only approximation!

• Mostly positive weights!

Contra

• Inherits cons from ME correction.

• Exponentiation extends over full phase space (need to integrate the
1-parton ME over full phase space).

• Difficult to iterate.

Subtleties

• Interface can be very subtle, nearly invalidating the PS independence.
Format issues.

• Truncated, vetoed shower necessary.

• Can be redefined to consist of “soft” and “hard” corrections, by using
Sn+1 = Bn+1F (Φ) instead, at cost of introducing parameters.
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MC@NLO

We have found that NLO +PS is possible if we start from the seed cross section

B̂NLO =

[
Bn + Vn + In +

∫
dΦrad (Sn+1 − Dn+1)

]
O0 +

∫
dΦrad (Bn+1 − Sn+1)O1

where Sn+1 is the PS approximation of the n + 1-jet rate.

=⇒ The NLO matching only depends on the first PS step!

It is possible to keep Sn+1 = Bn ⊗KΘ(µQ − ρ), where the Θ-function limits the
subtraction to the PS phase space, and keep

B
S
n =

[
Bn + Vn + In +

∫
dΦrad (Bn ⊗ KΘ(µQ − ρ)− Dn+1)

]
O0 S-events

B
H
n =

∫
dΦrad (Bn+1 − Bn ⊗ KΘ(µQ − ρ))O1 H-events

This emphasises the PS as an NLO subtraction. The matching now has soft
S-events and hard H-events. H-events are a non-logarithmic correction.
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MC@NLO illustration
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MC@NLO illustration
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MC@NLO illustration
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MC@NLO illustration
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MC@NLO illustration
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MC@NLO illustration
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MC@NLO

Pro

• Interface to PS very easy.

• Very controlled change of resummation!

• No new shower necessary.

Contra

• S-events alone, or H-events alone are not necessarily positive.

• No clear prescription how to handle/shower H-events.

• Difficult to iterate.

Subtleties

• PS needs to be a full NLO subtraction (requires colour-correct first
emissions), or instead use Sn+1 ≈ Bn ⊗ KΘ(µQ − ρ)

• If PS is a full NLO subtraction, need to treat anti-probabilistic weights
(see e.g. SHERPA, HERWIG++).

40 / 114



NLO matching results and comparisons

p⊥ of tt̄-system at a 14 TeV LHC for tt̄-MC@NLO.

PS no-emission probability regulates the divergence. Hard tail given by fixed-order.

Question: When is this observable NLO accurate?
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NLO matching results and comparisons

p⊥ of Higgs boson at a 14 TeV LHC for gg → H-POWHEG and gg → H-MC@NLO.

PS no-emission probability regulates the divergence.

What happens in the tail?

Question: Is this observable NLO accurate?
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NLO matching results and comparisons

p⊥ of Higgs boson at a 14 TeV LHC for gg → H-POWHEG.

Variations: Use a different PS kernel Sn+1 = Bn+1F (Φ) in POWHEG.

⇒ This is a very big “higher-order” effect!
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NLO matching results and comparisons

Number of anti-k⊥ jets in
Z+jets events in ATLAS.
aa
Zero-jet bin is NLO accurate,
one-jet bin is leading order.
aa
NLO matched calculation can-
not describe high jet multiplic-
ities.
aa
⇒ No single NLO matched cal-
culation will describe this data.
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NLO matching

NLO matching can be obtained by showering the seed cross section

B̂NLO =

[
Bn + Vn + In +

∫
dΦrad (Sn+1 − Dn+1)

]
O0 +

∫
dΦrad (Bn+1 − Sn+1)O1

NLO matching methods differ in the choice of Sn+1:

POWHEG uses Sn+1 = Bn+1 or Sn+1 = Bn+1F (Φ)

MC@NLO uses Sn+1 = Bn ⊗ KΘ(µQ − ρ)

Pro

• Promotes the PS for one process to NLO accuracy!

Contra

• New calculation needed whenever obervable depends on another jet!

• Multiple matched calculations cannot be combined without major work.

Subtleties

• Interface to PS.

• Treatment of real-emission events.
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Exclusive vs. inclusive observables

Let’s look at the process pp → e+e−. Then

Inclusive observable ≡ Observable only depends on e+e− momenta.
Example: Rapidity of e+e− pair
Example: pT of e+e− pair for pT = 0 GeV
Example: pT of e+ for pT . 45 GeV

Exclusive observable ≡ Any observable that depends on e+e− and
other momenta.
Example: pT of e+e− pair for pT > 0 GeV
Example: pT of e+ for pT & 45 GeV
Example: Rate of events with no jet

So is it easy to decide if an observable is either?
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Tricky observables

Consider the azimuthal angle ∆φZj between the Z-boson and the hardtest jet in
pp →Z+jets events.

• Need at least pp → Zj for
non-zero value.

• ∆φZj = π for pp → Zj.

• Need at least two jets for
∆φZj < π

• Need at least three jets for
∆φZj <

2
3
π, since hard jet

needs to be balanced by
two softer jets!

Z

jet

∆φZj ∆φZj

Z

jet

pp → Zj pp → Zjj pp → Zjjj

∆φZj

jet

Z

aa

To describe the full spectrum with at least LO accuracy, we need Zj, Zjj and
Zjjj. If we want to do a fixed-order calcculation for that, we need Zj@NNLO.

=⇒ Many emissions needed to describe the whole distribution.
=⇒ Short-cut: Multileg merging.
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The ME+PS merging problem

Goal: Get an accurate prediction of multijet observables (e.g. ∆φZj, njets)
Idea: Combine predictions for arbitrary many jets into a single calculation!

Problems:

⋄ Cross sections in fixed-order perturbation theory are inclusive by
definition ⇒ Overlap:

σ(pp → X ) ⊃ σ(pp → X + gluon)

⋄ Fixed-order predictions break down for collinear or soft partons.

⋄ PS gives sensible result in the collinear or soft regions, but breaks
down for (many) well-separated jets.

⋄ Adding PS and fixed-order again gives overlap, since the PS
reproduces the leading-log approximation of the cross section!

Solutions:

⋄ Remove overlap of FO cross sections by making them exclusive.

⋄ Restrict which parton shower emissions are allowed.
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Tree-level merging

For now, a simplification:

• Use only real emission corrections. “Cut away” the singularities with
a phase-space cut tMS. tMS ∼ min{all possible jet separations} works.

• This approximation is called a tree-level calculation, and tMS is called
merging scale cut.
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Tree-level merging

For now, a simplification:

• Use only real emission corrections. “Cut away” the singularities with
a phase-space cut tMS. tMS ∼ min{all possible jet separations} works.

• This approximation is called a tree-level calculation, and tMS is called
merging scale cut.

What we want to achieve is

• Emissions above tMS described by (exclusive) tree-level calculations.
. . . that should lead to a good description of high p⊥ data.

• Emissions below tMS described by the PS.
. . . because the PS gets soft/collinear partons right.

Watch out: Dependence on the arbitrary parameter tMS should be small!
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Making fixed-order calculations additive

To make fixed-order calculations exclusive (i.e. additive), remember that the
PS generates exclusive cross sections

σ0 or more jets = σexactly 0 jets︸ ︷︷ ︸
exclusive due to Sudakov factor

+ σexactly 1 jet︸ ︷︷ ︸
exclusive due to Sudakov factors

+ σ2 or more jets︸ ︷︷ ︸
inclusive

by multiplying PS Sudakov factors.

⇒ Convert the inclusive states of the ME calculation into exclusive

states by multiplying PS no-emission probabilities.

Different choices how to produce PS no-emission probabilities give different
schemes:

• MLM: Approximate no-emission probabilities by veto on jets.

• CKKW: Analytic Sudakov factors as no-emission probabilities.

• CKKW-L: PS no-emission probabilities directly from PS trial showers
(similar in METS).
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Minimising the dependence on tMS

After making the tree-level matrix elements exclusive, we are allowed to add
the calculations.

But we’re missing soft/collinear emissions, i.e. emissions below tMS.

These can be produced by parton showering.
Example: To get a state with a hard and a soft emission, start the PS on
Example: an exclusive one-jet tree-level calculation, and veto the event if
Example: the PS produced an emission > tMS.

But remember: PS emissions use running αs (PDFs) to capture higher orders!
⇒ So far, running αs (PDFs) below tMS, fixed values above tMS

⇒ Remove mismatch by using running αs (PDFs) also in tree-level calculations.

⇒ Matrix element + parton shower merging.
⇒ Let’s look at an example.
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ME+PS merging example

Logs

Loops

Legs

B0

“Normal” shower from the 0-emission cross section can give no emission, or one emission.
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ME+PS merging example

Logs

Loops

Legs

B0Π0 (ρ0, ρc)

“Normal” shower from the 0-emission cross section can give no emission, or one emission.

53 / 114



ME+PS merging example
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ME+PS merging example
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“Normal” shower from the 0-emission cross section can give no emission, or one emission.

Veto all events with ρemission > ρMS. Add the reweighted 1-emission ME above ρMS.
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ME+PS merging example
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ME+PS merging example

Π0 (ρ0, ρ1)
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“Normal” shower from the 0-emission cross section can give no emission, or one emission.

Veto all events with ρemission > ρMS. Add the reweighted 1-emission ME above ρMS.

=⇒ ME+PS merging
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Merging algorithms step-by-step

We have defined a ME+PS merging by

1. Regularise MEs with tMS cut.

2. Make MEs exclusive by multiplying PS no-emission probabilities
Πi (ρi , ρi+1).

3. Reweight MEs with factors wi to include αs and PDF running.

4. Shower these inputs.
Veto if the PS produced a “hard” event.

5. Add up all processed phase space points.

Note: To calculate the necessary no-emission probabilities Πi (ρi , ρi+1) and
αs+PDF weights wi , we need to define the scales ρ0, ρ1, . . . , ρn.

This information can be extracted by constructing a parton shower history for
each tree-level phase space point.

PS histories not only define the ordering of emissions (i.e. the scale sequence
ρ0, ρ1, . . . , ρn) but also complete, physical intermediate states.
Complete int. states can be used for trial showers. . . and much more.
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Parton shower histories

Construction of PS histories for input phase space points is crucial in ME+PS merging.

Different merging algorithms choose a PS history differently:
⋄ CKKW only constructs the scales of one history, with the k⊥ clustering algorithm.
⋄ METS chooses full intermediate states probabilistically at each step.
⋄ CKKW-L constructs all histories, chooses path of full int. states probabilistically.
If ρemission > ρn+1, veto =⇒ Generated no-emission probability Πn(ρn, ρn+1) ! 58 / 114



Parton shower histories

Construction of PS histories for input phase space points is crucial in ME+PS merging.
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Different merging algorithms choose a PS history differently:
⋄ CKKW constructs scales only one history, using a k⊥ custering algorithm.
⋄ METS chooses full intermediate states probabilistically at each step.
⋄ CKKW-L constructs all histories, chooses path of full int. states probabilistically.
If ρemission > ρn+1, veto =⇒ Generated no-emission probability Πn(ρn, ρn+1) ! 59 / 114



Parton shower histories

Construction of PS histories for input phase space points is crucial in ME+PS merging.
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Different merging algorithms choose a PS history differently:
⋄ CKKW only constructs the scales of one history, with the k⊥ clustering algorithm.
⋄ METS chooses full intermediate states probabilistically at each step.
⋄ CKKW-L constructs all histories, chooses path of full int. states probabilistically.
If ρemission > ρn+1, veto =⇒ Generated no-emission probability Πn(ρn, ρn+1) ! 60 / 114



Parton shower histories

Construction of PS histories for input phase space points is crucial in ME+PS merging.
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3-parton state
Physical Physical

2-parton state

Different merging algorithms choose a PS history differently:
⋄ METS chooses full intermediate states probabilistically at each step.
⋄ CKKW-L constructs all histories, chooses path of full int. states probabilistically.

Physical intermediate states Sn-jet allow trial showers: Run PS on Sn-jet.
If ρemission > ρn+1, veto =⇒ Generated no-emission probability 61 / 114



Multileg merging can be iterated!

Π0 (ρ0, ρ1)

Logs

Loops

Legs

B0 Π0 (ρ0, ρc) +

B0 K1(ρ < ρMS)w1 [ ]+ B1

B0

(ρ > ρMS)

Π1 (ρ1, ρc)×

Previous zero+one leg merging result.

Now also veto all events with ρemission > ρMS when showering 1-emission MEs

. . . which can produce one hard + no soft jet, or one hard + one soft jet.

. . . and add the ME for two hard jets. 62 / 114
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Logs
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Legs
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Π0 (ρ0, ρ1)B0 K1(ρ < ρMS)w1 [ ]+ B1

B0

(ρ > ρMS)

Π1 (ρ1, ρc)×

K2(ρ < ρMS)w2

+

Π0 (ρ0, ρ1)B0 K1(ρ < ρMS)w1 Π1 (ρ1, ρ2)

K2(ρ < ρMS)w2

+

Π0 (ρ0, ρ1)B1(ρ > ρMS) w1 Π1 (ρ1, ρ2)

Previous zero+one leg merging result.

Now also veto all events with ρemission > ρMS when showering 1-emission MEs

. . . which can produce one hard + no soft jet, or one hard + one soft jet.

Then add the ME for two hard jets. 63 / 114



Multileg merging can be iterated!

Logs

Loops

Legs

B0 Π0 (ρ0, ρc) +

Π0 (ρ0, ρ1)B0 K1(ρ < ρMS)w1 [ ]+ B1

B0

(ρ > ρMS)

Π1 (ρ1, ρc)×

K2(ρ < ρMS)w2

+

Π0 (ρ0, ρ1)B0 K1(ρ < ρMS)w1 Π1 (ρ1, ρ2)

K2(ρ < ρMS)w2

+

Π0 (ρ0, ρ1)B1(ρ > ρMS) w1 Π1 (ρ1, ρ2)

w2

+

Π0 (ρ0, ρ1)B2(ρ > ρMS) w1 Π1 (ρ1, ρ2)

Previous zero+one leg merging result.

Now also veto all events with ρemission > ρMS when showering 1-emission MEs

. . . which can produce one hard + no soft jet, or one hard + one soft jet.

Then add the reweighted ME for two hard jets. Iterate. 64 / 114



Merging questions: New processes

Now we can claim NLO accuracy, but. . .

u c u u

u s du

W W

u

u

u

W

d

New Born configuration Standard shower history ???

• . . . what do we do with new Born states? What’s a new Born state?

• How do we attach the QCD resummation (Sudakovs, αs scales. . . )?

• If these are “weak corrections” to dijet states, should we merge multiple
weak emissions?
=⇒ Resum weak ln

(
ŝ

MB

)
logs?
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Merging questions: Unordered states

. . . and the trouble with weak bosons continues:

p⊥1 ≈ p⊥2 p⊥ << p⊥1

If a QCD-like history is enforced on this state, it will often be unordered.
We cannot currently treat the resummation of unordered shower
splittings, and don’t have guidelines for choosing αS scales!
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Merging questions: Unordered states

Variation of αs(ρ) for unordered states (CKKW-L)
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Figure: HT in CKKW-L merging for Z+jets events @ 100 TeV
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Merging questions: Unordered states

. . . and the trouble with weak bosons continues:

p⊥1 ≈ p⊥2 p⊥ << p⊥1

If a QCD-like history is enforced on this state, it will often be unordered.
We cannot currently treat the resummation of unordered shower
splittings, and don’t have guidelines for choosing αS scales!
=⇒ Need unordered shower emissions to improve this.
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Merging questions: Competition with MPI

Event Scattering+MPI Perturbative scattering

Assume we understand weak showers and sub-leading QCD logs. We still only
model the competition between MPI and perturbative QCD!

At LHC, jets from MPI are relatively soft. ⇒ Small effects.
At 100 TeV, MPI jets can be relatively hard. ⇒ Competition must be
understood!

⋄ Can we simply only look at jets with large p⊥, i.e ignore competition?

⋄ Do we need to ME-correct MPI jets?

⋄ Do we need weak bosons from MPI?
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Multileg merging

Merging methods differ in the choice of

. . . with which no-emission probability to make MEs exclusive.

. . . how to decide on a sequence of states used in reweighting.

Pro

• Process independent.

• Combine multiple tree-level cross section with each other and with PS
resummation.

• Good prediction for exclusive observables.

Contra

• Not NLO (yet, see later)

• Changes inclusive cross sections.

Subtleties

• Treatment of non-shower like configurations.

• Non-shower type configurations might (depending on the scheme) require
truncated showers.
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Bug vs. Feature in ME+PS

The ME includes terms that are not compensated by the PS approximate
virtual corrections (i.e. no-emission probabilities).

These terms from the ME are what we need to describe multiple hard jets!

But if we simply add samples, the “improvements” will degrade the inclusive

cross section: σinc will contain ln(tMS) terms.

Inclusive cross sections do not know about (cuts on) higher
multiplicities. Inclusive is inclusive!

Traditional approach: Don’t use a too small value for the merging scale.

→ Uncancelled terms numerically not important.

New approach1:

Use a (PS) unitarity inspired approach exactly cancel the dependence

of the inclusive cross section on tMS.

1 JHEP1302(2013)094 (Leif Lönnblad, SP), JHEP1308(2013)114 (Simon Plätzer)
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Unitarised merging

We can use parton shower unitarity to rewrite Ckkw-l as

〈O〉 = B0ΠS+0(ρ0, ρMS)O(S+0j)

+
∫

B1Θ(t (S+1)− tMS)w
0
f w

0
αs
ΠS+0(ρ0, ρ1)O(S+1j)
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Unitarised merging

We can use parton shower unitarity to rewrite Ckkw-l as

〈O〉 = B0 −
∫

dρ w
0
f w

0
αs
B0K0(ρ)ΠS+0(ρ0, ρ)Θ (t (S+1)− tMS)O(S+0j)

+
∫

B1Θ(t (S+1)− tMS)w
0
f w

0
αs
ΠS+0(ρ0, ρ1)O(S+1j)

and replace

〈O〉 = B0 −
∫

dρ w
0
f w

0
αs
B1ΠS+0(ρ0, ρ)Θ (t (S+1)− tMS)O(S+0j)

+
∫

B1Θ(t (S+1)− tMS)w
0
f w

0
αs
ΠS+0(ρ0, ρ1)O(S+1j)

=⇒ UMEPS!
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ME+PS, merging zero and one-emission MEs. . . again

Π0 (ρ0, ρ1)

Logs

Loops

Legs

B0Π0 (ρ0, ρc) +

B0 K1(ρ < ρMS)w1[ ]+ B1

B0

(ρ > ρMS)
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ME+PS, put tMS → PS cut-off ρc for simplicity

Π0 (ρ0, ρ1)

Logs

Loops

Legs

B0Π0 (ρ0, ρc) +

w1 B1(ρ > ρc)
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ME+PS, cross section changes because B1 6= B0K0

Π0 (ρ0, ρ1)

Logs

Loops

Legs

B0

w1 B1(ρ > ρc)

−

ρc

K1 Π0 (ρ0, ρ1) +B0 w1
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ME+PS, cross section changes because B1 6= B0K0

Π0 (ρ0, ρ1)

Logs

Loops

Legs

B0

w1 B1(ρ > ρc)

−

ρc

K1 Π0 (ρ0, ρ1) +B0 w1
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ME+PS, cross section changes because virtual cannot cancel real correction!

Logs

Loops

Legs

B0

B1(ρ > ρc)

−

ρc

K1 +B0
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Forget the approximate PS virtual corrections!

Logs

Loops

Legs

B0

B1(ρ > ρc)

+
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Add new approximate virtual corrections by integrating real corrections! (LoopSim)

Logs

Loops

Legs

B0

B1(ρ > ρc)

−

ρc

+B1
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This also works when integrating reweighted exclusive real corrections! (UMEPS)

Logs

Loops

Legs

B0

B1(ρ > ρc)

−

ρc

+B1

Π0 (ρ0, ρ1)w1

w1 Π0 (ρ0, ρ1)
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Unitarised ME+PS merging (UMEPS)

This sketch can directly be extended to the case when we have

B̂2 = LO cross section, weighted with wf , wαs
and Π’s

∫
B̂n→m = integrated LO cross section, weighted with wf , wαs

and Π’s.

For example two-jet merging:

〈O〉 =

∫
dφ0

{

O(S+0j )

[
B0 −

∫
B̂1→0 −

∫
B̂2→0

]

+

∫
O(S+1j )

[
B̂1 −

∫
B̂2→1

]

+

∫ ∫
O(S+2j ) B̂2

}

Integrated configurations are available anyway since we need them to perform
the reweighting with no-emission probabilities!

⇒ Do integration simply by replacing input state Sn-jet by Sn-1-jet.
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Unitarised ME+PS merging (UMEPS)

This sketch can directly be extended to the case when we have

B̂2 = LO cross section, weighted with wf , wαs
and Π’s

∫
B̂n→m = integrated LO cross section, weighted with wf , wαs

and Π’s.

For example two-jet merging:

〈O〉 =

∫
dφ0

{

O(S+0j )

[
B0 −

∫
B̂1→0 −

∫
B̂2→0

]

+

∫
O(S+1j )

[
B̂1 −

∫
B̂2→1

]

+

∫ ∫
O(S+2j ) B̂2

}

Integrated configurations are available anyway since we need them to perform
the reweighting with no-emission probabilities!

⇒ Do integration simply by replacing input state Sn-jet by Sn-1-jet.
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UMEPS step-by-step

Logs

Loops

Legs
B0

Start from the 0-parton ME

Start from 0-parton ME.
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UMEPS step-by-step: 0-jet inclusive X

Logs

Loops

Legs
B0

Start from the 0-parton ME

. . . and do nothing above tMS.
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UMEPS step-by-step: 0-jet inclusive X , 1-jet inclusive X

B1(ρ > ρc)

B0

Logs

Loops

Legs
+

Then start from the 1-parton ME

. . . and do nothing above tMS.
82 / 114



UMEPS step-by-step: 0-jet inclusive X , 1-jet inclusive X

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

B0

Logs

Loops

Legs
+

Then start from the 1-parton ME

. . . and multiply no-emission probabilities and αs (PDF) weights.
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UMEPS step-by-step: 0-jet inclusive X, 1-jet inclusive X

Logs

Loops

Legs

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

Now restore the 0-jet inclusive cross section.

. . . by subtracting the integrated reweighted 1-jet cross section.
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UMEPS step-by-step: 0-jet inclusive X , 1-jet inclusive X , 2-jet inclusive X

Logs

Loops

Legs

B2(ρ > ρc)

B1(ρ > ρc)

B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

w1 Π0 (ρ0, ρ1)

+

Then start from the 2-parton ME

. . . by subtracting the integrated reweighted 1-jet cross section.
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UMEPS step-by-step: 0-jet inclusive X , 1-jet inclusive X , 2-jet inclusive X

Logs

Loops

Legs
B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

B2(ρ > ρc)w1Π0 (ρ0, ρ1)w2Π1 (ρ1, ρ2)

+

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

Then start from the 2-parton ME

. . . and multiply no-emission probabilities and αs (PDF) weights.
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UMEPS step-by-step: 0-jet inclusive X, 1-jet inclusive X, 2-jet inclusive X

Logs

Loops

Legs
B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

−

ρc

+w1Π0 (ρ0, ρ1)

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

w2Π1 (ρ1, ρ2)B2

B2(ρ > ρc)w1Π0 (ρ0, ρ1)w2Π1 (ρ1, ρ2)

Now restore the 0-jet and 1-jet inclusive cross sections

. . . by subtracting the integrated reweighted 2-jet cross section.
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UMEPS step-by-step: 0-jet inclusive X, 1-jet inclusive X, 2-jet inclusive X

Logs

Loops

Legs
B0

−

ρc

+B1w1Π0 (ρ0, ρ1)

−

ρc

+w1Π0 (ρ0, ρ1)

B1(ρ > ρc)w1 Π0 (ρ0, ρ1)

w2Π1 (ρ1, ρ2)B2

B2(ρ > ρc)w1Π0 (ρ0, ρ1)w2Π1 (ρ1, ρ2)

. . . and continue further, adding and subtracting. . .

Start from 0-parton ME.
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Unitarised paradigm, summary

Pro

• Inherits Pros from multileg merging.

• Does not change any of the inclusive cross sections by having better
approximate O(α+1

s ) corrections.

Contra

• Not NLO (yet, see later)

• Subtraction means counter events with negative weight.

Subtleties

• Inherited from multileg merging.
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Matching vs. Merging

Matrix element matching:

+Next-to-leading order accurate.

+Improved description of “first” Sudakov.

−Only possible one process at a time.

−Multiple jets always given by PS.

Matrix element merging:

+Process independent method.

+Valid for any number of additional partons.

−Only a leading-order method.

However, for data description, we need more:

p⊥Z is both a 0- and a 1-jet observable.

HT ,∆φZj, njets are “tricky” jet observables.

⇒ To describe these with small uncertainties, combine NLO calculations!
⇒ NLO merging
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Intermediate step: MENLOPS

Logs

Loops

Legs

B0

B1(ρ > ρc)

−

ρc

+B1

Π0 (ρ0, ρ1)w1

w1 Π0 (ρ0, ρ1)

Leading-order merging includes the real corrections to

+0-jet production, but has only approximate virtual corrections.
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Intermediate step: MENLOPS

Logs

Loops

Legs

B1(ρ > ρc)

−

ρc

+B1

Π0 (ρ0, ρ1)w1

w1 Π0 (ρ0, ρ1)B0

Replace the lowest multiplicity with the NLO result B0.

⇒ +0-jet @ NLO, high multiplicities still given by tree-level MEs.
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NLO merging: Strategy

Any leading-order method X only ever contains approximate virtual corrections.

We want to use the full NLO multijet results whenever possible, e.g. have

NLO accuracy for inclusive W + 0 jet observables
NLO accuracy for inclusive W + 1 jet observables
NLO accuracy for inclusive W + 2 jet observables

. . . all at the same time. And the method should be process-independent.
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NLO merging: Strategy

Any leading-order method X only ever contains approximate virtual corrections.

We want to use the full NLO multijet results whenever possible, e.g. have

NLO accuracy for inclusive W + 0 jet observables
NLO accuracy for inclusive W + 1 jet observables
NLO accuracy for inclusive W + 2 jet observables

. . . all at the same time. And the method should be process-independent.

To do NLO multi-jet merging for your preferred LO scheme X, do:

⋄ Subtract approximate X O(αs)-terms, add multiple NLO calculations.

⋄ Make sure fixed-order calculations do not overlap by cutting, vetoing events,

and/or vetoing emissions.

⋄ Adjust higher orders to suit other needs.

⇒ X@NLO

The meaning of “NLO ” will become clear below.
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NLO merging schemes

FxFx1: Combine MC@NLO’s by MLM jet matching@NLO

FxFx: Pro: Probably fewest counter events.
FxFx: Con: Restricted tMS range. Accuracy unclear.

MEPS@NLO2: Combine MC@NLO’s by METS@NLO

FxFx1: Pro: Improved Sudakovs.
FxFx1: Con: Restricted tMS range.

UNLOPS3: Combine MC@NLO’s or POWHEG’s by UMEPS @NLO

FxFx1: Pro: Unitarity by approximate NNLO terms.
FxFx1: Con: Naively, many counter events.

MiNLO4: Get zero-jet NLO by reweighted one-jet POWHEG after integration
FxFx1: Pro: Improved resummation, unitary.
FxFx1: Con: Process-dependent, only two NLO’s can be combined.

1JHEP1212(2012)061 (Frixione, Frederix), 2JHEP1304(2013)027 (Höche, Krauss, Schönherr, Siegert)

3 JHEP1303(2013)166 (Lönnblad, SP), JHEP1308(2013)114 (Plätzer), 4JHEP1305(2013)082 (Hamilton, Nason, Oleari, Zanderighi)
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FxFx: Jet matching @ NLO

• Start from MC@NLO calculations.

• Reweight with CKKW-type αs -running, Sudakov factors (or suppression
functions)

• Remove double-counted O(α+1
s )-terms

• Match “matrix element jets” to “shower jets” (instead of matching
“matrix element partons” to “shower jets”)
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FxFx plots
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Merging MC@NLO calculations with MEPS@NLO

• Start from S-MC@NLO calculations.

• Disallow real-emission states above tMS.

• Reweight with CKKW-type αs/PDF-running, carefully preserving NLO

accuracy by subtractions

• Reweight with O(α+1
s )-subtracted PS Sudakov factors (generated by

“forgetful” shower)

• Reweight with O(α+1
s )-subtracted MC@NLO Sudakov factors

• When iterating, do not veto hard real emissions for highest multiplicity,
and do not subtract the S-MC@NLO Sudakov
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MEPS@NLO plots

Sherpa MePs@Nlo
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UNLOPS = UMEPS@NLO

UMEPS is a leading-order method, i.e. it contains only approximate virtual
corrections.

We want to use the full NLO results whenever possible.
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UNLOPS = UMEPS@NLO

UMEPS is a leading-order method, i.e. it contains only approximate virtual
corrections.

We want to use the full NLO results whenever possible.

Basic idea: Do NLO multi-jet merging for UMEPS:

⋄ Subtract approximate UMEPS O(αs)-terms, add back full NLO.

⋄ To preserve the inclusive (NLO) cross section, add approximate NNLO.

⇒ UNLOPS1.

For UNLOPS merging, we need exclusive NLO inputs:

B̃n = Bn + Vn + In+1|n +

∫
dΦrad

(
Bn+1|nΘ (ρMS − t (S+n+1, ρ)) − Dn+1|n

)

We can get these e.g. from POWHEG-BOX or MC@NLO output.

1 JHEP1303(2013)166 (Leif Lönnblad, SP), also in JHEP1308(2013)114 (Simon Plätzer)
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The UNLOPS method

Start with UMEPS:

〈O〉 =

∫
dφ0

{
O(S+0j )

(
B0+ B̃0 −

∫

s

B̃1→0 +

∫

s

B1→0 −

[∫
B̂1→0

]

−1,2

−

∫

s

B
↑
2→0 −

∫
B̂2→0

)

+

∫
O(S+1j )

(
B̃1 +

[
B̂1

]

−1,2
−

[∫
B̂2→1

]

−2

)
+

∫ ∫
O(S+2j )B̂2

}
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The UNLOPS method

Remove all unwanted O(αn
s
)- and O(αn+1

s
)-terms:

〈O〉 =

∫
dφ0

{
O(S+0j )

(
B0+ B̃0 −

∫

s

B̃1→0 +

∫

s

B1→0 −

[ ∫
B̂1→0

]

−1,2

−

∫

s

B
↑
2→0 −

∫
B̂2→0

)

+

∫
O(S+1j )

(
B̃1 +

[
B̂1

]

−1,2
−

[ ∫
B̂2→1

]

−2

)
+

∫ ∫
O(S+2j )B̂2

}
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The UNLOPS method

Add full NLO results:

〈O〉 =

∫
dφ0

{
O(S+0j )

(
B0+ B̃0 −

∫

s

B̃1→0 +

∫

s

B1→0 −

[ ∫
B̂1→0

]

−1,2

−

∫

s

B
↑
2→0 −

∫
B̂2→0

)

+

∫
O(S+1j )

(
B̃1 +

[
B̂1

]

−1,2
−

[ ∫
B̂2→1

]

−2

)
+

∫ ∫
O(S+2j )B̂2

}
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The UNLOPS method

Unitarise:

〈O〉 =

∫
dφ0

{
O(S+0j )

(
B0+ B̃0 −

∫

s

B̃1→0 +

∫

s

B1→0 −

[ ∫
B̂1→0

]

−1,2

−

∫

s

B
↑
2→0 −

∫
B̂2→0

)

+

∫
O(S+1j )

(
B̃1 +

[
B̂1

]

−1,2
−

[ ∫
B̂2→1

]

−2

)
+

∫ ∫
O(S+2j )B̂2

}
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The UNLOPS method

UNLOPS merging of zero and one parton at NLO:

〈O〉 =

∫
dφ0

{
O(S+0j )

(
B0+ B̃0 −

∫

s

B̃1→0 +

∫

s

B1→0 −

[ ∫
B̂1→0

]

−1,2

−

∫

s

B
↑
2→0 −

∫
B̂2→0

)

+

∫
O(S+1j )

(
B̃1 +

[
B̂1

]

−1,2
−

[ ∫
B̂2→1

]

−2

)
+

∫ ∫
O(S+2j )B̂2

}
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The UNLOPS method

UNLOPS merging of zero and one parton at NLO:

〈O〉 =

∫
dφ0

{
O(S+0j )

(
B0+ B̃0 −

∫

s

B̃1→0 +

∫

s

B1→0 −

[ ∫
B̂1→0

]

−1,2

−

∫

s

B
↑
2→0 −

∫
B̂2→0

)

+

∫
O(S+1j )

(
B̃1 +

[
B̂1

]

−1,2
−

[ ∫
B̂2→1

]

−2

)
+

∫ ∫
O(S+2j )B̂2

}

Iterate for the case of M different NLO calculations, and N tree-level calculations:

〈O〉 =

M−1∑

m=0

∫
dφ0

∫
· · ·

∫
O(S+mj )

{
B̃m +

[
B̂m

]

−m,m+1
+

∫

s

Bm+1→m

−

M∑

i=m+1

∫

s

B̃i→m −

M∑

i=m+1

[ ∫
B̂i→m

]

−i,i+1

−

M∑

i=m+1

∫

s

B
↑
i+1→m −

N∑

i=M+1

∫
B̂i→m

}

+

∫
dφ0

∫
· · ·

∫
O(S+Mj )

{
B̃M +

[
B̂M

]

−M,M+1
−

[ ∫
B̂M+1→M

]

−M

−

N∑

i=M+1

∫
B̂i+1→M

}

+

N∑

n=M+1

∫
dφ0

∫
· · ·

∫
O(S+nj )



B̂n −

N∑

i=n+1

∫
B̂i→n




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The UNLOPS method

UNLOPS merging of zero and one parton at NLO:

〈O〉 =

∫
dφ0

{
O(S+0j )

(
B0+ B̃0 −

∫

s

B̃1→0 +

∫

s

B1→0 −

[ ∫
B̂1→0

]

−1,2

−

∫

s

B
↑
2→0 −

∫
B̂2→0

)

+

∫
O(S+1j )

(
B̃1 +

[
B̂1

]

−1,2
−

[ ∫
B̂2→1

]

−2

)
+

∫ ∫
O(S+2j )B̂2

}

Iterate for the case of M different NLO calculations, and N tree-level calculations:

〈O〉 =

M−1∑

m=0

∫
dφ0

∫
· · ·

∫
O(S+mj )

{
B̃m +

[
B̂m

]

−m,m+1
+

∫

s

Bm+1→m

−

M∑

i=m+1

∫

s

B̃i→m −

M∑

i=m+1

[ ∫
B̂i→m

]

−i,i+1

−

M∑

i=m+1

∫

s

B
↑
i+1→m −

N∑

i=M+1

∫
B̂i→m

}

+

∫
dφ0

∫
· · ·

∫
O(S+Mj )

{
B̃M +

[
B̂M

]

−M,M+1
−

[ ∫
B̂M+1→M

]

−M

−

N∑

i=M+1

∫
B̂i+1→M

}

+

N∑

n=M+1

∫
dφ0

∫
· · ·

∫
O(S+nj )



B̂n −

N∑

i=n+1

∫
B̂i→n





Inputs (Bn, B̃n or Bn) taken from external tools.

Merging done internally in PYTHIA 8.

Please memorise for later.
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Full-fledged example for UNLOPS merging
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UNLOPS results (W+jets)

Inclusive sample containing (W + no resolved)@NLO, (W + one resolved)@NLO and (W + two resolved)@LO.



NLO merged results (H+jets)

Figure: p⊥,H and ∆φ12 for gg→H after merging (H+0)@NLO, (H+1)@NLO, (H+2)@NLO,
(H+3)@LO, compared to other generators.

⇒ The generators come closer together if enough fixed-order matrix elements are
employed. The uncertainties after cuts are still very large.
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MiNLO

MiNLO is philosophically different from the other schemes. It emphasises
the usage of accurate Sudakov factors.

• Begin with HJ-POWHEG

• Use CKKW-style running αs , carefully keeping NLO accuracy.

• Reweight with analytic Sudakov factors.

• Choose these Sudakov factors so that∫
HJ-POWHEG ⊗ αs -weight ⊗ Sudakovs = σNLO

0-jet + non-log O(α2
s )

=⇒ Unitary scheme.

In the inclusive cross section, the improved analytical Sudakov factor
cancels the logarithms in the 1-jet NLO calculation by exponentiating
most terms of the calculation!

=⇒ Roughly, the analytical Sudakov roughly corresponds to a
“1-jet@NLO-ME-corrected” no-emission probability - if that were possible.
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MiNLO plots
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NLO merging summary

NLO merging methods have (mostly) been derived from LO schemes.
Thus, we face many confusing acronyms.

Goal: Combine as many NLO calculations as are available into one
inclusive calculation.

Pro

• Best Monte Carlo predictions for broad variety of processes at LHC.

Contra

• Not NNLO (yet, see later)

• All schemes contain counter events with negative weight.

Subtleties

• Inherited from the multileg merging scheme used to derive the
method.

• All schemes differ in the treatment of yet higher orders.
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Next steps: NNLO matching

Idea: Use a NLO merging scheme, assume that the 0-jet inclusive cross
section after merging is σNLO merged = σNLO

0 = 1 + c1αs , and that we know
σNNLO
0 = 1 + c1αs + c2α

2
s .

Then note

σNNLO

σNLO merged
σNLO merged = (1 + c2α

2
s +O(α3

s ))(1 + c1αs) = σNNLO +O(α3
s )

⇒ A unitary NLO merging scheme can easily be upgraded to NNLO!

MiNLO was upgraded (NNLO for Higgs) with a multiplicative K-factor.

⇒ POWHEG philosophy at NNLO

UNLOPS was upgraded (NNLO for Drell-Yan) by defining two classes of
states - “0-jet exclusive” and “1-jet inclusive”, and putting new NNLO

only for “0-jet exclusive” states.

⇒ MC@NLO philosophy at NNLO
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Slide taken from Emanuele Re, Talk given at ZPW 2014



UN2LOPS

↓ NLO calculated with NNLO PDFsNLO calculated with NLO PDFs ↓



Summary of MEPS lecture

• Parton showers can systematically improved with fixed-order calculations.

• Three major schools exist

• Matrix element corrections: Oldest scheme, dating back to 80’s.
Available for simple processes in all parton showers.
Iteratively used for e+e− in Vincia (even at NLO).

• Matrix element matching: “PS” used as extended subtraction for
NLO calculations.
Two schools: MC@NLO and POWHEG. Differences in exponentiation
and in treatment of real corrections.

• Matrix element merging: Emphasis on combining many multijet
ME’s. Make fixed-order calculations additive by making them
exclusive through no-emission probabilities. Then minimise the
impact of arbitrary slicing parameters.
Three schools: MLM, CKKW(-L) and UMEPS. Differences in
generation (approximation of) no-emission probabilities, and in the
treatment of non-showerlike configurations.
NLO merging: Combination of multiple NLO calculations. Take
leading-order merging X, remove approximate O(αs) terms and add
the full NLO. Inherits philosophy from LO merging scheme.
NLO merging should be the workhorse for LHC Run II.
NNLO matching: Brand new extension of NLO merging methods. 110 / 114
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