Lectures on parton showers and matrix elements

Stefan Prestel

(DESY)
CTEQ school 2014, PKU Beijing, July 08-18, 2014

Lecture II: Improving parton showers with fixed-order calculations

Recap of last lecture

- QCD scattering cross sections factorise.
- The factorisation can be cast into a probabilistic form suitable for a numerical implementation.
- Parton showers tell us how the inclusive cross section is sliced up into exclusive objects, where exclusive means a fixed number of resolved jets.
- Exclusive cross sections are defined through no-emission probabilities.
- All cross sections can be writen as a polynomial of logarithms.
- This log-structure can be illustrated on figures.

Recap: α_{s} orders are split into legs

Recap: α_{s} orders are split into legs and loops

Recap: n-leg MEs fill towers

Recap: n-leg MEs fill towers

Recap: n-loop corrections fill towers

Recap: n-loop corrections fill towers

Recap: Towers are composed of logs

Recap: Towers are composed of logs

Recap: Towers are composed of logs

Recap: PS fixed order input

Recap: PS resums LL rows into no-emission probabilities (no PS emission)

Recap: PS fills layers of LL loop corrections (one PS emission)

Recap: PS fills layers of LL loop corrections (no or one PS emission)

Recap: PS fills layers of LL loop corrections (sum of all PS results)

$\sigma_{0 \text { or more jets }}=\sigma_{\text {exactly } 0 \text { jets }}+\sigma_{\text {exactly } 1 \text { jet }}+\sigma_{\text {exactly } 2 \text { jets }}+\ldots+\sigma_{\mathrm{n} \text { or more jets }}$

Recap of last lecture

- QCD scattering cross sections factorise.
- The factorisation can be cast into a probabilistic form suitable for a numerical implementation.
- Parton showers tell us how the inclusive cross section is sliced up into exclusive objects, where exclusive means a fixed number of resolved jets.
- Exclusive cross sections are defined through no-emission probabilities.
- All cross sections can be writen as a polynomial of logarithms.
- This log-structure can be illustrated on figures.

Systematic improvements of modern showers are possible due to local energy-momentum conservation.
\Longrightarrow Systematic improvements are the topic of this lecture!

Improvement schemes

- Matrix element corrections.
- Oldest scheme
- Usage in Herwig(++) and Pythia(8) slightly different.
- Very hard to iterate.
- Matrix element matching.
- Used ideas from ME corrections.
- Typically combined with NLO corrections.
- Very hard to iterate.
- Matrix element merging.
- Slice phase space in two, use ME for hard jets, PS for soft jets.
- Introduces resolution criterion.
- Very easy to iterate.

We will use B_{n} for the tree-level n-parton differential cross section, and \widetilde{B}_{n} or $\overline{\mathrm{B}}_{n}$ for NLO cross sections that are differential in n-parton phase space.

Matrix element corrections

Remember how we constructed the parton shower:

- Find a factorizing approximation.
- Cast the factorising functions into probabilities.
- Choose branchings probabilistically.

Idea: Find new probabilities that add to the full ME!
For this, we need an overestimate for the double-differential partonic cross section $P_{\text {full-me, and }}$ find a corrective probability $P_{\text {ME-correction, }}$, so that
$P_{\text {full-ME }} \equiv \sum P_{\text {new }}=\sum P_{\text {shower }} * P_{\text {ME-correction }, i} \quad$ with
$P_{\text {shower }}=\sum_{i \in[\text { possible } \mathrm{PS} \text { splittings }]} P_{P S, i} \quad, \quad P_{\mathrm{ME} \text {-correction }, i}=\frac{\mathcal{P}_{i} P_{\text {full-ME }}}{P_{\text {shower }}} \quad$ and $\quad \sum_{i} \mathcal{P}_{i}=1$

Then we can use two steps to correct an emission to the full ME result:

1. Choose a branching according to $P_{P S, i}$
2. Accept with probability $P_{\mathrm{ME} \text {-correction, } i}$

Summed over all possibilities, this gives the full ME ("Veto algorithm").

ME corrections: Start from lowest order cross section.

ME corrections: Produce no emissions according to new probability

where $\left.\quad \Pi_{0}^{\mathrm{B}}\left(\rho_{0}, \rho_{c}\right)=\exp \left(-\int d \hat{\Phi} \frac{\mathrm{~B}_{1}}{\mathrm{~B}_{0}} \Theta\left(\rho(\hat{\Phi})-\rho_{c}\right)\right)=\exp \left(-\int d \hat{\Phi} P_{\mathrm{new}} \Theta\left(\rho(\hat{\Phi})-\rho_{c}\right)\right)\right)$

ME corrections: Generate emissions according to new probability

This reproduces the full 1-parton radiation pattern, and is finite!

Matrix element corrections

Pro

- Rather natural within parton shower.
- Full ME (incl. interferences) gets exponentiated, not only approximation!
- Very efficient.

Contra

- Difficult to find overestimates, projectors and corrective weights.
- Exponentiation extends over full phase space (need to integrate the 1-parton ME over full phase space).
- Difficult to iterate, since ME-correction for $n+1$-partons has to divide out n-parton ME.
Subtleties
- The hardest emission has to be corrected, not only the first emission.
- Need to use "soft" and "hard" corrections if PS does not cover phase space: Add full ME in the gaps (hard), ME corrections for every "hardest emission" in the evolution (soft).
\Rightarrow Unfortunately usual attitude: Process dependent, tricky to achieve generality.

Note: VinciA iterates MEC's for $e^{+} e^{-} \rightarrow$ jets, and also aims for $p p$ collisions.

NLO matching

NLO matching does not solve MEC problems, but uses the lessons to
Achieve NLO for inclusive +0 -jet, and LO for inclusive +1 -jet observables
To get there, remember that the NLO cross section is

$$
\begin{aligned}
\mathrm{B}_{\mathrm{NLO}}= & {\left[\mathrm{B}_{n}+\mathrm{V}_{n}+\mathrm{I}_{n}\right] \mathcal{O}_{0}+\int d \Phi_{\mathrm{rad}}\left(\mathrm{~B}_{n+1} \mathcal{O}_{1}-\mathrm{D}_{n+1} \mathcal{O}_{0}\right) } \\
= & {\left[\mathrm{B}_{n}+\mathrm{V}_{n}+\mathrm{I}_{n}\right] \mathcal{O}_{0}+\int d \Phi_{\mathrm{rad}}\left(\mathrm{~S}_{n+1} \mathcal{O}_{0}-\mathrm{D}_{n+1} \mathcal{O}_{0}\right) } \\
& +\int d \Phi_{\mathrm{rad}}\left(\mathrm{~S}_{n+1} \mathcal{O}_{1}-\mathrm{S}_{n+1} \mathcal{O}_{0}\right)+\int d \Phi_{\mathrm{rad}}\left(\mathrm{~B}_{n+1} \mathcal{O}_{1}-\mathrm{S}_{n+1} \mathcal{O}_{1}\right)
\end{aligned}
$$

where S_{n+1} are approximate virtual/real PS corrections.
Red term is the $\mathcal{O}\left(\alpha_{s}\right)$ part of a shower from $\mathrm{B}_{n} . \Rightarrow$ For now discard from $\mathrm{B}_{\text {NLO }}$.
Thus, we have the seed cross section
$\widehat{\mathrm{B}}_{\mathrm{NLO}}=\left[\mathrm{B}_{n}+\mathrm{V}_{n}+\mathrm{I}_{n}+\int d \Phi_{\text {rad }}\left(\mathrm{S}_{n+1}-\mathrm{D}_{n+1}\right)\right] \mathcal{O}_{0}+\int d \Phi_{\text {rad }}\left(\mathrm{B}_{n+1}-\mathrm{S}_{n+1}\right) \mathcal{O}_{1}$
This is not the NLO result. . . but showering the \mathcal{O}_{0}-part will restore this!
\Longrightarrow NLO + PS accuracy!

POWHEG

We have found that NLO + PS is possible if we start from the seed cross section

$$
\widehat{\mathrm{B}}_{\mathrm{NLO}}=\left[\mathrm{B}_{n}+\mathrm{V}_{n}+\mathrm{I}_{n}+\int d \Phi_{\mathrm{rad}}\left(\mathrm{~S}_{n+1}-\mathrm{D}_{n+1}\right)\right] \mathcal{O}_{0}+\int d \Phi_{\mathrm{rad}}\left(\mathrm{~B}_{n+1}-\mathrm{S}_{n+1}\right) \mathcal{O}_{1}
$$

where S_{n+1} is the PS approximation of the $n+1$-jet rate.
\Longrightarrow The NLO matching only depends on the first PS step!
The first step can be done externally. Using $S_{n+1}=B_{n+1}$, i.e. a MEC for the first splitting, we find

$$
\widehat{\mathrm{B}}_{\mathrm{NLO}}=\left[\mathrm{B}_{n}+\mathrm{V}_{n}+\mathrm{I}_{n}+\int d \Phi_{\mathrm{rad}}\left(\mathrm{~B}_{n+1}-\mathrm{D}_{n+1}\right)\right] \mathcal{O}_{0}=\overline{\mathrm{B}}_{n}
$$

\Longrightarrow Seed cross section is simply the inclusive NLO result. This is POWHEG.
Roughly, POWHEG combines an ME correction with an NLO weight.
POWHEG-BOX is an ME generator that provides NLO inputs for parton showers. One (ME corrected) emission is done by POWHEG-BOX, other emissions have to be filled in by PS.

POWHEG illustration

Shower from the seed cross section

POWHEG illustration

Shower from the seed cross section can give no emission,

POWHEG illustration

Shower from the seed cross section can give no emission, or one emission.

POWHEG illustration

Shower from the seed cross section can give no emission, or one emission. The hardness of the emission is defined differently from parton shower.

POWHEG illustration

The shower needs to be attached to this intermediate result, without introducing overlaps \Rightarrow Truncated, vetoed shower necessary.

POWHEG illustration

The sum of all parts gives an NLO +PS simulation

POWHEG

Pro

- Inherits pros from ME correction.
- Full ME (incl. interferences) gets exponentiated, not only approximation!
- Mostly positive weights!

Contra

- Inherits cons from ME correction.
- Exponentiation extends over full phase space (need to integrate the 1-parton ME over full phase space).
- Difficult to iterate.

Subtleties

- Interface can be very subtle, nearly invalidating the PS independence. Format issues.
- Truncated, vetoed shower necessary.
- Can be redefined to consist of "soft" and "hard" corrections, by using $\mathrm{S}_{n+1}=\mathrm{B}_{n+1} F(\Phi)$ instead, at cost of introducing parameters.

MC@NLO

We have found that NLO + PS is possible if we start from the seed cross section
$\widehat{\mathrm{B}}_{\mathrm{NLO}}=\left[\mathrm{B}_{n}+\mathrm{V}_{n}+\mathrm{I}_{n}+\int d \Phi_{\mathrm{rad}}\left(\mathrm{S}_{n+1}-\mathrm{D}_{n+1}\right)\right] \mathcal{O}_{0}+\int d \Phi_{\mathrm{rad}}\left(\mathrm{B}_{n+1}-\mathrm{S}_{n+1}\right) \mathcal{O}_{1}$
where S_{n+1} is the PS approximation of the $n+1$-jet rate.
\Longrightarrow The NLO matching only depends on the first PS step!
It is possible to keep $\mathrm{S}_{n+1}=\mathrm{B}_{n} \otimes \mathrm{~K} \Theta\left(\mu_{Q}-\rho\right)$, where the Θ-function limits the subtraction to the PS phase space, and keep

$$
\begin{array}{lll}
\overline{\mathrm{B}}_{n}^{\mathrm{S}} & =\left[\mathrm{B}_{n}+\mathrm{V}_{n}+\mathrm{I}_{n}+\int d \Phi_{\mathrm{rad}}\left(\mathrm{~B}_{n} \otimes \mathrm{~K} \Theta\left(\mu_{Q}-\rho\right)-\mathrm{D}_{n+1}\right)\right] \mathcal{O}_{0} & \text { S-events } \\
\overline{\mathrm{B}}_{n}^{\mathrm{H}} & =\int d \Phi_{\mathrm{rad}}\left(\mathrm{~B}_{n+1}-\mathrm{B}_{n} \otimes \mathrm{~K} \Theta\left(\mu_{Q}-\rho\right)\right) \mathcal{O}_{1} & \mathbb{H} \text {-events }
\end{array}
$$

This emphasises the PS as an NLO subtraction. The matching now has soft \mathbb{S}-events and hard \mathbb{H}-events. \mathbb{H}-events are a non-logarithmic correction.

MC@NLO illustration

The shower off \mathbb{S}-events

MC@NLO illustration

The shower off \mathbb{S}-events can give no emission

MC@NLO illustration

The shower off \mathbb{S}-events can give no emission, or one emission.

MC@NLO illustration

The shower off \mathbb{S}-events can give no emission, or one emission.
The emission is directly from PS \Rightarrow Continuation obvious.

MC@NLO illustration

The shower off \mathbb{S}-events can give no emission, or one emission.
Now add the hard remainder \mathbb{H}-events.

MC@NLO illustration

The shower needs to be attached to this intermediate result, which is easy for \mathbb{S}-events, less clear for \mathbb{H}-events.

MC@NLO illustration

The sum of all parts gives an NLO +PS simulation

MC@NLO

Pro

- Interface to PS very easy.
- Very controlled change of resummation!
- No new shower necessary.

Contra

- S-events alone, or \mathbb{H}-events alone are not necessarily positive.
- No clear prescription how to handle/shower \mathbb{H}-events.
- Difficult to iterate.

Subtleties

- PS needs to be a full NLO subtraction (requires colour-correct first emissions), or instead use $S_{n+1} \approx \mathrm{~B}_{n} \otimes \mathrm{~K} \Theta\left(\mu_{Q}-\rho\right)$
- If PS is a full NLO subtraction, need to treat anti-probabilistic weights (see e.g. SHERPA, HERWIG++).

NLO matching results and comparisons

p_{\perp} of $t \bar{t}$-system at a 14 TeV LHC for $t \bar{t}$-MC@NLO.
PS no-emission probability regulates the divergence. Hard tail given by fixed-order.
Question: When is this observable NLO accurate?

NLO matching results and comparisons

p_{\perp} of Higgs boson at a 14 TeV LHC for $g g \rightarrow H$-POWHEG and $g g \rightarrow H$-MC@NLO. PS no-emission probability regulates the divergence.
What happens in the tail?
Question: Is this observable NLO accurate?

NLO matching results and comparisons

p_{\perp} of Higgs boson at a 14 TeV LHC for $g g \rightarrow H$-POWHEG.
Variations: Use a different PS kernel $\mathrm{S}_{n+1}=\mathrm{B}_{n+1} F(\Phi)$ in POWHEG.
\Rightarrow This is a very big "higher-order" effect!

NLO matching results and comparisons

Number of anti- k_{\perp} jets in $Z+$ jets events in ATLAS.

Zero-jet bin is NLO accurate, one-jet bin is leading order.

NLO matched calculation cannot describe high jet multiplicities.
\Rightarrow No single NLO matched calculation will describe this data.

NLO matching

NLO matching can be obtained by showering the seed cross section

$$
\widehat{\mathrm{B}}_{\mathrm{NLO}}=\left[\mathrm{B}_{n}+\mathrm{V}_{n}+\mathrm{I}_{n}+\int d \Phi_{\text {rad }}\left(\mathrm{S}_{n+1}-\mathrm{D}_{n+1}\right)\right] \mathcal{O}_{0}+\int d \Phi_{\text {rad }}\left(\mathrm{B}_{n+1}-\mathrm{S}_{n+1}\right) \mathcal{O}_{1}
$$

NLO matching methods differ in the choice of S_{n+1} :
POWHEG uses $\mathrm{S}_{n+1}=\mathrm{B}_{n+1}$ or $\mathrm{S}_{n+1}=\mathrm{B}_{n+1} F(\Phi)$
MC@NLO uses $\mathrm{S}_{n+1}=\mathrm{B}_{n} \otimes \mathrm{~K} \Theta\left(\mu_{Q}-\rho\right)$
Pro

- Promotes the PS for one process to NLO accuracy!

Contra

- New calculation needed whenever obervable depends on another jet!
- Multiple matched calculations cannot be combined without major work.

Subtleties

- Interface to PS.
- Treatment of real-emission events.

Exclusive vs. inclusive observables

Let's look at the process $p p \rightarrow e^{+} e^{-}$. Then
Inclusive observable \equiv Observable only depends on $e^{+} e^{-}$momenta. Example: Rapidity of $e^{+} e^{-}$pair p_{T} of $e^{+} e^{-}$pair for $p_{T}=0 \mathrm{GeV}$ p_{T} of e^{+}for $p_{T} \lesssim 45 \mathrm{GeV}$

Exclusive observable \equiv Any observable that depends on $e^{+} e^{-}$and other momenta.

$$
\begin{aligned}
\text { Example: } & p_{T} \text { of } e^{+} e^{-} \text {pair for } p_{T}>0 \mathrm{GeV} \\
& p_{T} \text { of } e^{+} \text {for } p_{T} \gtrsim 45 \mathrm{GeV} \\
& \text { Rate of events with no jet }
\end{aligned}
$$

So is it easy to decide if an observable is either?

Tricky observables

Consider the azimuthal angle $\Delta \phi_{\mathrm{Zj}}$ between the Z-boson and the hardtest jet in $p p \rightarrow \mathbf{Z}+$ jets events.

- Need at least $p p \rightarrow \mathrm{Zj}$ for non-zero value.
- $\Delta \phi_{\mathrm{Zj}}=\pi$ for $p p \rightarrow \mathrm{Zj}$.
- Need at least two jets for $\Delta \phi_{\mathrm{Zj}}<\pi$
- Need at least three jets for $\Delta \phi_{\mathrm{Zj}}<\frac{2}{3} \pi$, since hard jet needs to be balanced by two softer jets!

To describe the full spectrum with at least LO accuracy, we need $\mathrm{Zj}, \mathrm{Zjj}$ and Z jjj . If we want to do a fixed-order calcculation for that, we need $\mathrm{Zj} @ N N L O$.
\Longrightarrow Many emissions needed to describe the whole distribution.
\Longrightarrow Short-cut: Multileg merging.

The ME+PS merging problem

Goal: Get an accurate prediction of multijet observables (e.g. $\Delta \phi_{\mathrm{Zj}}, n_{\mathrm{jets}}$) Idea: Combine predictions for arbitrary many jets into a single calculation!

Problems:

\diamond Cross sections in fixed-order perturbation theory are inclusive by definition \Rightarrow Overlap:

$$
\sigma(p p \rightarrow X) \supset \sigma(p p \rightarrow X+\text { g/uon })
$$

\diamond Fixed-order predictions break down for collinear or soft partons.
\diamond PS gives sensible result in the collinear or soft regions, but breaks down for (many) well-separated jets.
\diamond Adding PS and fixed-order again gives overlap, since the PS reproduces the leading-log approximation of the cross section!

Solutions:

\diamond Remove overlap of FO cross sections by making them exclusive.
\diamond Restrict which parton shower emissions are allowed.

Tree-level merging

For now, a simplification:

- Use only real emission corrections. "Cut away" the singularities with a phase-space cut t_{MS}. $t_{\mathrm{MS}} \sim \min \{$ all possible jet separations $\}$ works.
- This approximation is called a tree-level calculation, and t_{MS} is called merging scale cut.

Tree-level merging

For now, a simplification:

- Use only real emission corrections. "Cut away" the singularities with a phase-space cut $t_{\text {MS }}$. $t_{\text {Ms }} \sim \min \{$ all possible jet separations $\}$ works.
- This approximation is called a tree-level calculation, and t_{MS} is called merging scale cut.

What we want to achieve is

- Emissions above t_{MS} described by (exclusive) tree-level calculations. ... that should lead to a good description of high p_{\perp} data.
- Emissions below $t_{\text {MS }}$ described by the PS. ... because the PS gets soft/collinear partons right.

Watch out: Dependence on the arbitrary parameter t_{MS} should be small!

Making fixed-order calculations additive

To make fixed-order calculations exclusive (i.e. additive), remember that the PS generates exclusive cross sections

$$
\sigma_{0} \text { or more jets }=\underbrace{\sigma_{\text {exactly } 0 \text { jets }}}_{\text {exclusive due to Sudakov factor }}+\underbrace{\sigma_{\text {exactly } 1 \text { jet }}}_{\text {exclusive due to Sudakov factors }}+\underbrace{\sigma_{2 \text { or more jets }}}_{\text {inclusive }}
$$

by multiplying PS Sudakov factors.
\Rightarrow Convert the inclusive states of the ME calculation into exclusive states by multiplying PS no-emission probabilities.

Different choices how to produce PS no-emission probabilities give different schemes:

- MLM: Approximate no-emission probabilities by veto on jets.
- CKKW: Analytic Sudakov factors as no-emission probabilities.
- CKKW-L: PS no-emission probabilities directly from PS trial showers (similar in METS).

Minimising the dependence on $t_{\text {MS }}$

After making the tree-level matrix elements exclusive, we are allowed to add the calculations.

But we're missing soft/collinear emissions, i.e. emissions below t_{MS}.

These can be produced by parton showering.
Example: To get a state with a hard and a soft emission, start the PS on an exclusive one-jet tree-level calculation, and veto the event if the PS produced an emission $>t_{\text {MS }}$.

But remember: PS emissions use running α_{s} (PDFs) to capture higher orders!
\Rightarrow So far, running α_{s} (PDFs) below t_{MS}, fixed values above t_{MS}
\Rightarrow Remove mismatch by using running α_{s} (PDFs) also in tree-level calculations.
\Rightarrow Matrix element + parton shower merging.
Let's look at an example.

ME + PS merging example

"Normal" shower from the 0 -emission cross section can

ME + PS merging example

"Normal" shower from the 0 -emission cross section can give no emission,

ME + PS merging example

"Normal" shower from the 0 -emission cross section can give no emission, or one emission.

ME + PS merging example

"Normal" shower from the 0 -emission cross section can give no emission, or one emission. Veto all events with $\rho_{\text {emission }}>\rho_{\mathrm{MS}}$.

ME + PS merging example

"Normal" shower from the 0 -emission cross section can give no emission, or one emission. Veto all events with $\rho_{\text {emission }}>\rho_{\mathrm{MS}}$. Add the reweighted 1-emission ME above ρ_{MS}.

ME + PS merging example

"Normal" shower from the 0-emission cross section can give no emission, or one emission. Veto all events with $\rho_{\mathrm{emission}}>\rho_{\mathrm{MS}}$. Add the reweighted 1-emission ME above ρ_{MS}.

Merging algorithms step-by-step

We have defined a ME+PS merging by

1. Regularise MEs with $t_{\text {Ms }}$ cut.
2. Make MEs exclusive by multiplying PS no-emission probabilities $\Pi_{i}\left(\rho_{i}, \rho_{i+1}\right)$.
3. Reweight MEs with factors w_{i} to include α_{s} and PDF running.
4. Shower these inputs.

Veto if the PS produced a "hard" event.
5. Add up all processed phase space points.

Note: To calculate the necessary no-emission probabilities $\Pi_{i}\left(\rho_{i}, \rho_{i+1}\right)$ and $\alpha_{s}+$ PDF weights w_{i}, we need to define the scales $\rho_{0}, \rho_{1}, \ldots, \rho_{n}$.

This information can be extracted by constructing a parton shower history for each tree-level phase space point.
PS histories not only define the ordering of emissions (i.e. the scale sequence $\rho_{0}, \rho_{1}, \ldots, \rho_{n}$) but also complete, physical intermediate states.
Complete int. states can be used for trial showers. . . and much more.

Parton shower histories

Construction of PS histories for input phase space points is crucial in ME+PS merging.

Parton shower histories

Construction of PS histories for input phase space points is crucial in ME + PS merging.

Parton shower histories

Construction of PS histories for input phase space points is crucial in ME+PS merging.

Different merging algorithms choose a PS history differently:
\diamond CKKW only constructs the scales of one history, with the k_{\perp} clustering algorithm.

Parton shower histories

Construction of PS histories for input phase space points is crucial in ME+PS merging.

Different merging algorithms choose a PS history differently:
\diamond METS chooses full intermediate states probabilistically at each step.
\diamond CKKW-L constructs all histories, chooses path of full int. states probabilistically. Physical intermediate states $S_{\mathrm{n} \text {-jet }}$ allow trial showers: Run PS on $S_{\mathrm{n} \text {-jet }}$.
If $\rho_{\text {emission }}>\rho_{n+1}$, veto $\quad \Longrightarrow$ Generated no-emission probability

Multileg merging can be iterated!

Previous zero+one leg merging result.
Now also veto all events with $\rho_{\text {emission }}>\rho_{\text {MS }}$ when showering 1-emission MEs \ldots which can produce one hard + no soft jet

Multileg merging can be iterated!

Previous zero+one leg merging result.
Now also veto all events with $\rho_{\text {emission }}>\rho_{\text {MS }}$ when showering 1-emission MEs \ldots which can produce one hard + no soft jet, or one hard + one soft jet.

Multileg merging can be iterated!

Previous zero+one leg merging result.
Now also veto all events with $\rho_{\text {emission }}>\rho_{\text {MS }}$ when showering 1-emission MEs
\ldots which can produce one hard + no soft jet, or one hard + one soft jet.
Then add the reweighted ME for two hard jets. Iterate.

Merging questions: New processes

Now we can claim NLO accuracy, but. . .

New Born configuration

Standard shower history

???

- ... what do we do with new Born states? What's a new Born state?
- How do we attach the QCD resummation (Sudakovs, α_{s} scales...)?
- If these are "weak corrections" to dijet states, should we merge multiple weak emissions?
\Longrightarrow Resum weak $\ln \left(\frac{\hat{s}}{M_{B}}\right)$ logs?

Merging questions: Unordered states

.... and the trouble with weak bosons continues:

If a QCD-like history is enforced on this state, it will often be unordered. We cannot currently treat the resummation of unordered shower splittings, and don't have guidelines for choosing α_{S} scales!

Merging questions: Unordered states

Figure: H_{T} in CKKW-L merging for $Z+$ jets events © 100 TeV

Merging questions: Unordered states

... and the trouble with weak bosons continues:

If a QCD-like history is enforced on this state, it will often be unordered. We cannot currently treat the resummation of unordered shower splittings, and don't have guidelines for choosing α_{S} scales!
\Longrightarrow Need unordered shower emissions to improve this.

Merging questions: Competition with MPI

Event

Scattering+MPI

Perturbative scattering

Assume we understand weak showers and sub-leading QCD logs. We still only model the competition between MPI and perturbative QCD!
At LHC, jets from MPI are relatively soft. \Rightarrow Small effects. At $100 \mathrm{TeV}, \mathrm{MPI}$ jets can be relatively hard. \Rightarrow Competition must be understood!
\diamond Can we simply only look at jets with large p_{\perp}, i.e ignore competition?
\diamond Do we need to ME-correct MPI jets?
\diamond Do we need weak bosons from MPI?

Multileg merging

Merging methods differ in the choice of
... with which no-emission probability to make MEs exclusive.
... how to decide on a sequence of states used in reweighting.

Pro

- Process independent.
- Combine multiple tree-level cross section with each other and with PS resummation.
- Good prediction for exclusive observables.

Contra

- Not NLO (yet, see later)
- Changes inclusive cross sections.

Subtleties

- Treatment of non-shower like configurations.
- Non-shower type configurations might (depending on the scheme) require truncated showers.

Bug vs. Feature in ME + PS

The ME includes terms that are not compensated by the PS approximate virtual corrections (i.e. no-emission probabilities).
These terms from the ME are what we need to describe multiple hard jets!
But if we simply add samples, the "improvements" will degrade the inclusive cross section: $\sigma_{\text {inc }}$ will contain $\ln \left(t_{\mathrm{MS}}\right)$ terms.

Inclusive cross sections do not know about (cuts on) higher multiplicities. Inclusive is inclusive!

Traditional approach: Don't use a too small value for the merging scale.
\rightarrow Uncancelled terms numerically not important.
New approach ${ }^{1}$:
Use a (PS) unitarity inspired approach exactly cancel the dependence of the inclusive cross section on $t_{\text {MS }}$.

[^0]
Unitarised merging

We can use parton shower unitarity to rewrite CkKw-L as
$\langle\mathcal{O}\rangle=\mathrm{B}_{0} \Pi_{S_{+0}}\left(\rho_{0}, \rho_{\mathrm{MS}}\right) \mathcal{O}\left(S_{+0 j}\right)$

$$
+\int \mathrm{B}_{1} \Theta\left(t\left(S_{+1}\right)-t_{\mathrm{MS}}\right) w_{f}^{0} w_{\alpha_{\mathrm{s}}}^{0} \Pi_{S_{+0}}\left(\rho_{0}, \rho_{1}\right) \mathcal{O}\left(S_{+1 j}\right)
$$

Unitarised merging

We can use parton shower unitarity to rewrite CkKw-L as

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\mathrm{B}_{0}-\int d \rho w_{f}^{0} w_{\alpha_{\mathrm{s}}}^{0} \mathrm{~B}_{0} \mathrm{~K}_{0}(\rho) \Pi_{S_{+0}}\left(\rho_{0}, \rho\right) \Theta\left(t\left(S_{+1}\right)-t_{\mathrm{MS}}\right) \mathcal{O}\left(S_{+0 j}\right) \\
& +\int \mathrm{B}_{1} \Theta\left(t\left(S_{+1}\right)-t_{\mathrm{MS}}\right) w_{f}^{0} w_{\alpha_{\mathrm{s}}}^{0} \Pi_{S_{+0}}\left(\rho_{0}, \rho_{1}\right) \mathcal{O}\left(S_{+1 j}\right)
\end{aligned}
$$

Unitarised merging

We can use parton shower unitarity to rewrite CkKw-L as

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\mathrm{B}_{0}-\int d \rho w_{f}^{0} w_{\alpha_{\mathrm{s}}}^{0} \mathrm{~B}_{0} \mathrm{~K}_{0}(\rho) \Pi_{S_{+0}}\left(\rho_{0}, \rho\right) \Theta\left(t\left(S_{+1}\right)-t_{\mathrm{MS}}\right) \mathcal{O}\left(S_{+0 j}\right) \\
& +\int \mathrm{B}_{1} \Theta\left(t\left(S_{+1}\right)-t_{\mathrm{MS}}\right) w_{f}^{0} w_{\alpha_{\mathrm{s}}}^{0} \Pi_{S_{+0}}\left(\rho_{0}, \rho_{1}\right) \mathcal{O}\left(S_{+1 j}\right)
\end{aligned}
$$

Unitarised merging

We can use parton shower unitarity to rewrite Ckkw-L as

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\mathrm{B}_{0}-\int d \rho w_{f}^{0} w_{\alpha_{\mathrm{s}}}^{0} \mathrm{~B}_{0} \mathrm{~K}_{0}(\rho) \Pi_{S_{+0}}\left(\rho_{0}, \rho\right) \Theta\left(t\left(S_{+1}\right)-t_{\mathrm{MS}}\right) \mathcal{O}\left(S_{+0 j}\right) \\
& +\int \mathrm{B}_{1} \Theta\left(t\left(S_{+1}\right)-t_{\mathrm{MS}}\right) w_{f}^{0} w_{\alpha_{\mathrm{s}}}^{0} \Pi_{S_{+0}}\left(\rho_{0}, \rho_{1}\right) \mathcal{O}\left(S_{+1 j}\right)
\end{aligned}
$$

and replace

$$
\begin{aligned}
\langle\mathcal{O}\rangle & =\mathrm{B}_{0}-\int d \rho w_{f}^{0} w_{\alpha_{\mathrm{s}}}^{0} \mathrm{~B}_{1} \Pi_{S_{+0}}\left(\rho_{0}, \rho\right) \Theta\left(t\left(S_{+1}\right)-t_{\mathrm{MS}}\right) \mathcal{O}\left(S_{+0 j}\right) \\
& +\int \mathrm{B}_{1} \Theta\left(t\left(S_{+1}\right)-t_{\mathrm{MS}}\right) w_{f}^{0} w_{\alpha_{\mathrm{s}}}^{0} \Pi_{S_{+0}}\left(\rho_{0}, \rho_{1}\right) \mathcal{O}\left(S_{+1 j}\right)
\end{aligned}
$$

\Longrightarrow UMEPS!

ME+PS, merging zero and one-emission MEs. .. again

$\mathrm{ME}+\mathrm{PS}$, put $t_{\mathrm{MS}} \rightarrow \mathrm{PS}$ cut-off ρ_{c} for simplicity

$M E+P S$, cross section changes because $B_{1} \neq B_{0} K_{0}$

$M E+P S$, cross section changes because $B_{1} \neq B_{0} K_{0}$

ME+PS, cross section changes because virtual cannot cancel real correction!

Forget the approximate PS virtual corrections!

Add new approximate virtual corrections by integrating real corrections! (LoopSim)

This also works when integrating reweighted exclusive real corrections! (UMEPS)

Unitarised ME+PS merging (UMEPS)

This sketch can directly be extended to the case when we have
$\widehat{\mathrm{B}}_{2}=\mathrm{LO}$ cross section, weighted with $w_{f}, w_{\alpha_{s}}$ and $\Pi^{\prime} \mathrm{s}$
$\int \widehat{\mathrm{B}}_{n \rightarrow m}=$ integrated LO cross section, weighted with $w_{f}, w_{\alpha_{s}}$ and Π 's.
For example two-jet merging:

$$
\begin{aligned}
\langle\mathcal{O}\rangle= & \int d \phi_{0}\left\{\mathcal{O}\left(S_{+0 j}\right)\left[\mathrm{B}_{0}-\int \widehat{\mathrm{B}}_{1 \rightarrow 0}-\int \widehat{\mathrm{B}}_{2 \rightarrow 0}\right]\right. \\
& +\int \mathcal{O}\left(S_{+1 j}\right)\left[\widehat{\mathrm{B}}_{1}-\int \widehat{\mathrm{B}}_{2 \rightarrow 1}\right] \\
& \left.+\iint \mathcal{O}\left(S_{+2 j}\right) \widehat{\mathrm{B}}_{2}\right\}
\end{aligned}
$$

Integrated configurations are available anyway since we need them to perform the reweighting with no-emission probabilities!
\Rightarrow Do integration simply by replacing input state $S_{n \text {-jet }}$ by $S_{n-1-\text {-jet }}$.

Unitarised ME+PS merging (UMEPS)

Physical
3-parton state)

Integrated configurations are available anyway since we need them to perform the reweighting with no-emission probabilities!
\Rightarrow Do integration simply by replacing input state $S_{\mathrm{n} \text {-jet }}$ by $S_{\mathrm{n}-1 \text {-jet }}$.

UMEPS step-by-step

UMEPS step-by-step: 0-jet inclusive \checkmark

\ldots and do nothing above t_{Ms}.

UMEPS step-by-step: 0 -jet inclusive $\mathcal{X}, 1$-jet inclusive \checkmark

UMEPS step-by-step: 0-jet inclusive $\mathcal{X}, 1$-jet inclusive

Then start from the 1-parton ME
... and multiply no-emission probabilities and α_{s} (PDF) weights.

UMEPS step-by-step: 0-jet inclusive $\checkmark, 1$-jet inclusive \checkmark

Now restore the 0 -jet inclusive cross section.
... by subtracting the integrated reweighted 1 -jet cross section.

UMEPS step-by-step: 0 -jet inclusive $\mathcal{X}, 1$-jet inclusive $\mathcal{X}, 2$-jet inclusive \checkmark

Then start from the 2-parton ME

UMEPS step-by-step: 0 -jet inclusive $\mathcal{X}, 1$-jet inclusive $\mathcal{X}, 2$-jet inclusive

Then start from the 2-parton ME
\ldots and multiply no-emission probabilities and α_{s} (PDF) weights.

UMEPS step-by-step: 0-jet inclusive $\checkmark, 1$-jet inclusive $\checkmark, 2$-jet inclusive

Now restore the 0 -jet and 1 -jet inclusive cross sections
... by subtracting the integrated reweighted 2-jet cross section.

UMEPS step-by-step: 0 -jet inclusive $\checkmark, 1$-jet inclusive $\checkmark, 2$-jet inclusive

Unitarised paradigm, summary

Pro

- Inherits Pros from multileg merging.
- Does not change any of the inclusive cross sections by having better approximate $\mathcal{O}\left(\alpha_{s}^{+1}\right)$ corrections.
Contra
- Not NLO (yet, see later)
- Subtraction means counter events with negative weight.

Subtleties

- Inherited from multileg merging.

Matching vs. Merging

Matrix element matching:
+Next-to-leading order accurate.
+Improved description of "first" Sudakov.
-Only possible one process at a time.
-Multiple jets always given by PS.

Matrix element merging:

+ Process independent method.
+Valid for any number of additional partons.
-Only a leading-order method.

However, for data description, we need more:

$$
p_{\perp z} \text { is both a 0- and a 1-jet observable. }
$$

$H_{T}, \Delta \phi_{\mathrm{Zj}}, n_{\text {jets }}$ are "tricky" jet observables.
\Rightarrow To describe these with small uncertainties, combine NLO calculations!
\Rightarrow NLO merging

Intermediate step: MENLOPS

Leading-order merging includes the real corrections to
+0 -jet production, but has only approximate virtual corrections.

Intermediate step: MENLOPS

$\Rightarrow+0$-jet @ NLO, high multiplicities still given by tree-level MEs.

NLO merging: Strategy

Any leading-order method \mathbf{X} only ever contains approximate virtual corrections.

We want to use the full NLO multijet results whenever possible, e.g. have
NLO accuracy for inclusive $W+0$ jet observables
NLO accuracy for inclusive $\mathrm{W}+1$ jet observables
NLO accuracy for inclusive $W+2$ jet observables
\ldots all at the same time. And the method should be process-independent.

NLO merging: Strategy

Any leading-order method \mathbf{X} only ever contains approximate virtual corrections.

We want to use the full NLO multijet results whenever possible, e.g. have
NLO accuracy for inclusive $\mathrm{W}+0$ jet observables
NLO accuracy for inclusive $\mathrm{W}+1$ jet observables
NLO accuracy for inclusive $\mathrm{W}+2$ jet observables
all at the same time. And the method should be process-independent.

To do NLO multi-jet merging for your preferred LO scheme \mathbf{X}, do:
\diamond Subtract approximate $\mathbf{X} \mathcal{O}\left(\alpha_{\mathrm{s}}\right)$-terms, add multiple NLO calculations.
\diamond Make sure fixed-order calculations do not overlap by cutting, vetoing events, and/or vetoing emissions.
\diamond Adjust higher orders to suit other needs.
\Rightarrow X@NLO
The meaning of "NLO" will become clear below.

NLO merging schemes

FxFx ${ }^{1}$: Combine MC@NLO's by MLM jet matching@NLO
Pro: Probably fewest counter events.
Con: Restricted t_{MS} range. Accuracy unclear.

MEPS@NLO ${ }^{2}$: Combine MC@NLO's by METS@NLO
Pro: Improved Sudakovs.
Con: Restricted $t_{\text {Ms }}$ range.

UNLOPS ${ }^{3}$: Combine MC@NLO's or POWHEG's by UMEPS @NLO
Pro: Unitarity by approximate NNLO terms.
Con: Naively, many counter events.

MiNLO ${ }^{4}$: Get zero-jet NLO by reweighted one-jet POWHEG after integration
Pro: Improved resummation, unitary.
Con: Process-dependent, only two NLO's can be combined.

[^1]
FxFx: Jet matching @ NLO

- Start from MC@NLO calculations.
- Reweight with CKKW-type α_{s}-running, Sudakov factors (or suppression functions)
- Remove double-counted $\mathcal{O}\left(\alpha_{s}^{+1}\right)$-terms
- Match "matrix element jets" to "shower jets" (instead of matching "matrix element partons" to "shower jets")

FxFx plots

Merging MC@NLO calculations with MEPS@NLO

- Start from S-MC@NLO calculations.
- Disallow real-emission states above $t_{\text {MS }}$.
- Reweight with CKKW-type α_{s} /PDF-running, carefully preserving NLO accuracy by subtractions
- Reweight with $\mathcal{O}\left(\alpha_{s}^{+1}\right)$-subtracted PS Sudakov factors (generated by "forgetful" shower)
- Reweight with $\mathcal{O}\left(\alpha_{s}^{+1}\right)$-subtracted MC@NLO Sudakov factors
- When iterating, do not veto hard real emissions for highest multiplicity, and do not subtract the S-MC@NLO Sudakov

MEPS@NLO plots

Transverse momentum of the Higgs boson

UNLOPS = UMEPS @NLO

UMEPS is a leading-order method, i.e. it contains only approximate virtual corrections.

We want to use the full NLO results whenever possible.

UNLOPS = UMEPS @NLO

UMEPS is a leading-order method, i.e. it contains only approximate virtual corrections.

We want to use the full NLO results whenever possible.

Basic idea: Do NLO multi-jet merging for UMEPS:
\diamond Subtract approximate UMEPS $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$-terms, add back full NLO.
\diamond To preserve the inclusive (NLO) cross section, add approximate NNLO.
\Rightarrow UNLOPS ${ }^{1}$.

For UNLOPS merging, we need exclusive NLO inputs:

$$
\widetilde{\mathrm{B}}_{n}=\mathrm{B}_{n}+\mathrm{V}_{n}+\mathrm{I}_{n+1 \mid n}+\int d \Phi_{\mathrm{rad}}\left(\mathrm{~B}_{n+1 \mid n} \Theta\left(\rho_{\mathrm{MS}}-t\left(S_{+n+1}, \rho\right)\right)-\mathrm{D}_{n+1 \mid n}\right)
$$

We can get these e.g. from PowhEg-Box or MC@NLO output.

[^2]
The UNLOPS method

Start with UMEPS:

$$
\begin{aligned}
& \langle\mathcal{O}\rangle=\int d \phi_{0}\left\{\mathcal { O } (S _ { + 0 j }) \left(\mathrm{~B}_{0}+\right.\right. \\
& -\int \widehat{\mathrm{B}}_{1 \rightarrow 0} \\
& \left.-\int \widehat{\mathrm{B}}_{2 \rightarrow 0}\right) \\
& \left.+\int \mathcal{O}\left(S_{+1 j}\right)\left(\begin{array}{ll}
\widehat{\mathrm{B}}_{1} & -\int \widehat{\mathrm{B}}_{2 \rightarrow 1}
\end{array}\right)+\iint \mathcal{O}\left(S_{+2 j}\right) \widehat{\mathrm{B}}_{2}\right\}
\end{aligned}
$$

The UNLOPS method

Remove all unwanted $\mathcal{O}\left(\alpha_{\mathrm{s}}^{n}\right)$ - and $\mathcal{O}\left(\alpha_{\mathrm{s}}^{n+1}\right)$-terms:

$$
\begin{aligned}
&\langle\mathcal{O}\rangle=\int d \phi_{0}\left\{\mathcal{O}\left(S_{+0 j}\right)\right. \\
&+\int \mathcal{O}\left(S_{+1 j}\right)\left(\widehat{\mathrm{B}}_{1 \rightarrow 0}\right]_{-1,2} \\
& {\left.\left.\left[\widehat{\mathrm{~B}}_{1}\right]_{-1,2}-\left[\int \widehat{\mathrm{B}}_{2 \rightarrow 1}\right]_{-2}\right)+\iint \mathcal{O}\left(S_{+2 j}\right) \widehat{\mathrm{B}}_{2}\right\} }
\end{aligned}
$$

The UNLOPS method

Add full NLO results:

$$
\begin{aligned}
\langle\mathcal{O}\rangle=\int d \phi_{0} & \left\{\mathcal { O } (S _ { + 0 j }) \left(\begin{array}{cc}
\widetilde{\mathrm{B}}_{0} & -\left[\int \widehat{\mathrm{B}}_{1 \rightarrow 0}\right]_{-1,2} \\
+\int \mathcal{O}\left(S_{+1 j}\right)\left(\widetilde{\mathrm{B}}_{1}+\left[\widehat{\mathrm{B}}_{1}\right]_{-1,2}-\left[\int \widehat{\mathrm{B}}_{2 \rightarrow 1}\right]_{-2}\right) & \left.+\iint \mathcal{O}\left(S_{+2 j}\right) \widehat{\mathrm{B}}_{2}\right\}
\end{array}\right.\right.
\end{aligned}
$$

The UNLOPS method

Unitarise:

$$
\begin{gathered}
\langle\mathcal{O}\rangle=\int d \phi_{0}\left\{\mathcal{O}\left(S_{+0 j}\right)\left(\quad \widetilde{\mathrm{B}}_{0}-\int_{s} \widetilde{\mathrm{~B}}_{1 \rightarrow 0}+\int_{s} \mathrm{~B}_{1 \rightarrow 0}-\left[\int \widehat{\mathrm{B}}_{1 \rightarrow 0}\right]_{-1,2}-\int_{s} \mathrm{~B}_{2 \rightarrow 0}^{\uparrow}-\int \widehat{\mathrm{B}}_{2 \rightarrow 0}\right)\right. \\
\left.+\int \mathcal{O}\left(S_{+1 j}\right)\left(\widetilde{\mathrm{B}}_{1}+\left[\widehat{\mathrm{B}}_{1}\right]_{-1,2}-\left[\int \widehat{\mathrm{B}}_{2 \rightarrow 1}\right]_{-2}\right)+\iint \mathcal{O}\left(S_{+2 j}\right) \widehat{\mathrm{B}}_{2}\right\}
\end{gathered}
$$

The UNLOPS method

UNLOPS merging of zero and one parton at NLO:

$$
\begin{aligned}
& \langle\mathcal{O}\rangle=\int d \phi_{0}\left\{\mathcal{O}\left(S_{+0 j}\right)\left(\quad \widetilde{\mathrm{B}}_{0}-\int_{s} \widetilde{\mathrm{~B}}_{1 \rightarrow 0}+\int_{s} \mathrm{~B}_{1 \rightarrow 0}-\left[\int \widehat{\mathrm{B}}_{1 \rightarrow 0}\right]_{-1,2}-\int_{s} \mathrm{~B}_{2 \rightarrow 0}^{\uparrow}-\int \widehat{\mathrm{B}}_{2 \rightarrow 0}\right)\right. \\
& \left.+\int \mathcal{O}\left(S_{+1 j}\right)\left(\widetilde{\mathrm{B}}_{1}+\left[\widehat{\mathrm{B}}_{1}\right]_{-1,2}-\left[\int \widehat{\mathrm{B}}_{2 \rightarrow 1}\right]_{-2}\right)+\iint \mathcal{O}\left(S_{+2 j}\right) \widehat{\mathrm{B}}_{2}\right\}
\end{aligned}
$$

The UNLOPS method

UNLOPS merging of zero and one parton at NLO:

$$
\begin{aligned}
& \langle\mathcal{O}\rangle=\int d \phi_{0}\left\{\mathcal{O}\left(S_{+0 j}\right)\left(\quad \widetilde{\mathrm{B}}_{0}-\int_{s} \widetilde{\mathrm{~B}}_{1 \rightarrow 0}+\int_{s} \mathrm{~B}_{1 \rightarrow 0}-\left[\int \widehat{\mathrm{B}}_{1 \rightarrow 0}\right]_{-1,2}-\int_{s} \mathrm{~B}_{2 \rightarrow 0}^{\uparrow}-\int \widehat{\mathrm{B}}_{2 \rightarrow 0}\right)\right. \\
& \left.+\int \mathcal{O}\left(S_{+1 j}\right)\left(\widetilde{\mathrm{B}}_{1}+\left[\widehat{\mathrm{B}}_{1}\right]_{-1,2}-\left[\int \widehat{\mathrm{B}}_{2 \rightarrow 1}\right]_{-2}\right)+\iint \mathcal{O}\left(S_{+2 j}\right) \widehat{\mathrm{B}}_{2}\right\}
\end{aligned}
$$

Iterate for the case of M different NLO calculations, and N tree-level calculations:

$$
\begin{aligned}
\langle\mathcal{O}\rangle= & \sum_{m=0}^{M-1} \int d \phi_{0} \int \cdots \int \mathcal{O}\left(S_{+m j}\right)\left\{\widetilde{\mathrm{B}}_{m}+\left[\widehat{\mathrm{B}}_{m}\right]_{-m, m+1}+\int_{s} \mathrm{~B}_{m+1 \rightarrow m}\right. \\
& \left.-\sum_{i=m+1}^{M} \int_{s} \widetilde{\mathrm{~B}}_{i \rightarrow m}-\sum_{i=m+1}^{M}\left[\int \widehat{\mathrm{~B}}_{i \rightarrow m}\right]_{-i, i+1}-\sum_{i=m+1}^{M} \int_{s} \mathrm{~B}_{i+1 \rightarrow m}^{\uparrow}-\sum_{i=M+1}^{N} \int \widehat{\mathrm{~B}}_{i \rightarrow m}\right\} \\
& +\int d \phi_{0} \int \cdots \int \mathcal{O}\left(S_{+M j}\right)\left\{\widetilde{\mathrm{B}}_{M}+\left[\widehat{\mathrm{B}}_{M}\right]_{-M, M+1}-\left[\int \widehat{\mathrm{B}}_{M+1 \rightarrow M}\right]_{-M}-\sum_{i=M+1}^{N} \int \widehat{\mathrm{~B}}_{i+1 \rightarrow M}\right\} \\
& +\sum_{n=M+1}^{N} \int d \phi_{0} \int \cdots \int \mathcal{O}\left(S_{+n j}\right)\left\{\widehat{\mathrm{B}}_{n}-\sum_{i=n+1}^{N} \int \widehat{\mathrm{~B}}_{i \rightarrow n}\right\}
\end{aligned}
$$

The UNLOPS method

UNLOPS merging of zero and one parton at NLO:

$$
\begin{gathered}
\langle\mathcal{O}\rangle=\int d \phi_{0}\left\{\mathcal{O}\left(S_{+0 j}\right)\left(\quad \widetilde{\mathrm{B}}_{0}-\int_{s} \widetilde{\mathrm{~B}}_{1 \rightarrow 0}+\int_{s} \mathrm{~B}_{1 \rightarrow 0}-\left[\int \widehat{\mathrm{B}}_{1 \rightarrow 0}\right]_{-1,2}-\int_{s} \mathrm{~B}_{2 \rightarrow 0}^{\uparrow}-\int \widehat{\mathrm{B}}_{2 \rightarrow 0}\right)\right. \\
\left.+\int \mathcal{O}\left(S_{+1 j}\right)\left(\widetilde{\mathrm{B}}_{1}+\left[\widehat{\mathrm{B}}_{1}\right]_{-1,2}-\left[\int \widehat{\mathrm{B}}_{2 \rightarrow 1}\right]_{-2}\right)+\iint \mathcal{O}\left(S_{+2 j}\right) \widehat{\mathrm{B}}_{2}\right\}
\end{gathered}
$$

Iterate for the case of M different NLO calculations, and N tree-level calculations:

Inputs ($\mathrm{B}_{n}, \widetilde{\mathbf{B}}_{n}$ or $\overline{\mathrm{B}}_{n}$) taken from external tools.
Merging done internally in PYthia 8.

Full-fledged example for UNLOPS merging

Zero-jet NLO input: One-jet tree-level input:

One-jet NLO input: Two-jet tree-level input:

UNLOPS results (W+jets)

NLO merged results ($\mathrm{H}+\mathrm{jets}$)

Figure: $p_{\perp, H}$ and $\Delta \phi_{12}$ for $g g \rightarrow H$ after merging $(\mathrm{H}+0) @ \mathrm{NLO},(\mathrm{H}+1) @ \mathrm{NLO},(\mathrm{H}+2) @ \mathrm{NLO}$, $(\mathrm{H}+3) @ L O$, compared to other generators.
\Rightarrow The generators come closer together if enough fixed-order matrix elements are employed. The uncertainties after cuts are still very large.

MiNLO is philosophically different from the other schemes. It emphasises the usage of accurate Sudakov factors.

- Begin with HJ-POWHEG
- Use CKKW-style running α_{s}, carefully keeping NLO accuracy.
- Reweight with analytic Sudakov factors.
- Choose these Sudakov factors so that \int HJ-POWHEG $\otimes \alpha_{s}$-weight \otimes Sudakovs $=\sigma_{0 \text {-jet }}^{\text {NLO }}+$ non-log $\mathcal{O}\left(\alpha_{s}^{2}\right)$ \Longrightarrow Unitary scheme.

In the inclusive cross section, the improved analytical Sudakov factor cancels the logarithms in the 1-jet NLO calculation by exponentiating most terms of the calculation!
\Longrightarrow Roughly, the analytical Sudakov roughly corresponds to a "1-jet@NLO-ME-corrected" no-emission probability - if that were possible.

MiNLO plots

NLO merging summary

NLO merging methods have (mostly) been derived from LO schemes.
Thus, we face many confusing acronyms.

Goal: Combine as many NLO calculations as are available into one inclusive calculation.

Pro

- Best Monte Carlo predictions for broad variety of processes at LHC.

Contra

- Not NNLO (yet, see later)
- All schemes contain counter events with negative weight.

Subtleties

- Inherited from the multileg merging scheme used to derive the method.
- All schemes differ in the treatment of yet higher orders.

Next steps: NNLO matching

Idea: Use a NLO merging scheme, assume that the 0 -jet inclusive cross section after merging is $\sigma^{N L O \text { merged }}=\sigma_{0}^{N L O}=1+c_{1} \alpha_{s}$, and that we know $\sigma_{0}^{\text {NLL }}=1+c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}$.

Then note

$$
\frac{\sigma^{\text {NNLO }}}{\sigma^{\text {NLO merged }}} \sigma^{\text {NLO merged }}=\left(1+c_{2} \alpha_{s}^{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right)\left(1+c_{1} \alpha_{s}\right)=\sigma^{\text {NNLO }}+\mathcal{O}\left(\alpha_{s}^{3}\right)
$$

\Rightarrow A unitary NLO merging scheme can easily be upgraded to NNLO!
MiNLO was upgraded (NNLO for Higgs) with a multiplicative K-factor. \Rightarrow POWHEG philosophy at NNLO

UNLOPS was upgraded (NNLO for Drell-Yan) by defining two classes of states - "0-jet exclusive" and "1-jet inclusive", and putting new NNLO only for "0-jet exclusive" states.
\Rightarrow MC@NLO philosophy at NNLO

- NNLO with $\mu=m_{H} / 2$, HJ-MiNLO "core scale" m_{H}
[NNLO from hnnLo, Catani,Grazzini]
- $\left(7_{\mathrm{Mi}} \times 3_{\mathrm{NN}}\right)$ pts scale var. in NNLOPS, 7 pts in NNLO

Notice: band is 10%
[Until and including $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$, PS effects don't affect y_{H} (first 2 emissions controlled properly at $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$ by MiNLO+POWHEG)]

NLO calculated with NLO PDFs \downarrow

\downarrow NLO calculated with NNLO PDFs

Summary of MEPS lecture

- Parton showers can systematically improved with fixed-order calculations.
- Three major schools exist
- Matrix element corrections: Oldest scheme, dating back to 80's.

Available for simple processes in all parton showers. Iteratively used for $e^{+} e^{-}$in Vincia (even at NLO).

- Matrix element matching: "PS" used as extended subtraction for NLO calculations.
Two schools: MC@NLO and POWHEG. Differences in exponentiation and in treatment of real corrections.
- Matrix element merging: Emphasis on combining many multijet ME's. Make fixed-order calculations additive by making them exclusive through no-emission probabilities. Then minimise the impact of arbitrary slicing parameters.
Three schools: MLM, CKKW(-L) and UMEPS. Differences in generation (approximation of) no-emission probabilities, and in the treatment of non-showerlike configurations.
NLO merging: Combination of multiple NLO calculations. Take leading-order merging \mathbf{X}, remove approximate $\mathcal{O}\left(\alpha_{s}\right)$ terms and add the full NLO. Inherits philosophy from LO merging scheme. NLO merging should be the workhorse for LHC Run II. NNLO matching: Brand new extension of NLO merging methods.

Monte Carlo

 training studentships

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand the Monte Carlos you use!
Application rounds every 3 months.

for details go to: www.montecarlonet.org

References

Matrix element corrections
Pythia (PLB 185 (1987) 435, NPB 289 (1987) 810, PLB 449 (1999) 313, NPB 603 (2001) 297)
Herwig (CPC 90 (1995) 95)
Vincia (Phys.Rev. D78 (2008) 014026, Phys.Rev. D84 (2011) 054003, Phys.Rev. D85 (2012) 014013, Phys.Lett. B718 (2013)
1345-1350, Phys.Rev. D87 (2013) 5, 054033, JHEP 1310 (2013) 127)
POWHEG
JHEP 0411 (2004) 040 JHEP 0711 (2007) 070 POWHEG-BOX (JHEP 1006 (2010) 043)
MC@NLO
Original (JHEP 0206 (2002) 029) Herwig++ (Eur.Phys.J. C72 (2012) 2187)
Sherpa (JHEP 1209 (2012) 049) aMC@NLO (arXiv:1405.0301)
NLO matching results and comparisons
Plots taken from Ann.Rev.Nucl.Part.Sci. 62 (2012) $187 \quad$ Plots taken from JHEP 0904 (2009) 002
Tree-level merging MLM (Mangano, http://www-cpd.fnal.gov/personal/mrenna/tuning/nov2002/mlm.pdf. Talk presented at the
Fermilab ME/MC Tuning Workshop, Oct 4, 2002, Mangano et al. JHEP 0701 (2007) 013)
Pseudoshower (JHEP 0405 (2004) 040)
CKKW (JHEP 0111 (2001) 063, JHEP 0208 (2002) 015)
CKKW-L (JHEP 0205 (2002) 046, JHEP 0507 (2005) 054, JHEP 1203 (2012) 019)
METS (JHEP 0911 (2009) 038, JHEP 0905 (2009) 053)
Parton shower histories
Andre, Sjöstrand (PRD 57 (1998) 5767)
Unitarised merging
Pythia (JHEP 1302 (2013) 094) Herwig (JHEP 1308 (2013) 114) Sherpa (arXiv:1405.3607)
Intermediate step: MENLOPS
POWHEG (JHEP 1006 (2010) 039) Sherpa (JHEP 1108 (2011) 123)
FxFx: Jet matching @ NLO
JHEP 1212 (2012) 061
Merging MC@NLO calculations with MEPS@NLO
JHEP 1304 (2013) 027 JHEP 1301 (2013) 144 Plots taken from arXiv:1401.7971
UNLOPS = UMEPS @NLO
JHEP 1303 (2013) $166 \quad$ Plots taken from arXiv:1405.1067
MiNLO
Original (JHEP 1210 (2012) 155) Improved (JHEP 1305 (2013) 082)
MiNLO-NNLOPS
JHEP 1310 (2013) 222
UN ${ }^{2}$ LOPS
arXiv:1405.3607

[^0]: 1 JHEP1302(2013)094 (Leif Lönnblad, SP), JHEP1308(2013)114 (Simon Plätzer)

[^1]: ${ }^{1}$ JHEP1212(2012)061 (Frixione, Frederix), ${ }^{2}$ JHEP1304(2013)027 (Höche, Krauss, Schönherr, Siegert)
 3 JHEP1303(2013)166 (Lönnblad, SP), JHEP1308(2013)114 (Plätzer), ${ }^{4}$ JHEP1305(2013)082 (Hamilton, Nason, Oleari, Zanderighi)

[^2]: 1 JHEP1303(2013)166 (Leif Lönnblad, SP), also in JHEP1308(2013)114 (Simon Plätzer)

